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SECTION 1

Introduction

In recent years, electromagnetic scattering from complex structures has become an
important field of research. Accurate and efficient solutions to scattering from com-
plex structures can enhance the ability to understand how targets can be detected
in the presence of clutter. Many approaches are available, but for high frequency
scattering, the Uniform Theory of Diffraction (UTD) is one of the most efficient
and accurate techniques. UTD can provide the characteristic scattering properties
of local features of the target such as frequency response, polarization, and angular
behavior. |

It is well known that due to the highly local nature of high frequency scattering,
the solution to complex structures can be modeled approximately as a superposition
of scattered fields from simpler shapes such as platcs, ellipsoids, cylinders, dihedrals,
trihedrals, et cetera. These can be used to represent component parts of vehicles
such as trucks, aircraft, etc., as well as natural objects such as tree trunks and
branches.

The object of this research is to find far zone backscatter and bistatic scattered
fields from some of the most common shapes which require second and higher order
interactions to get an accurate result over a wide range of angles and frequencies.
The basic shapes important to this discussion are the dihedral, bruderhedral, tri-

hedral, top-hat, bi-cone, parallel plate cavily, cake pan (shallow circular cavity),




donnt and multi-joined cylinders. All the shapes considered are assnmed to he per-
fectly conducting except the multi-joined cylinders which may be made of dielectric
materials. For these shapes, the most important higher order interactions will be
determined. Where possible the expressions will be simplified to show the connec-
tion between the UTD results and the more classical PO approximations. It should
be pointed out that many of the targets do not have easily found references to their
scattering properties.

Some background information on UTD (1] is presented in Section 2. The double
diffraction formulation presented here is derived in Reference [2]. In Section 3, the
UTD analysis of a two-dimensional dihedral is discussed. Parallel ray formulation of
the UTD is used here for the far zone problem. This means, in two dimensions, that
only edge diffractions, their images, and various combinations of double diffractions
are needed. This is a very efficient and accurate means of analyzing the far zone
problem. It avoids any integrations and non physical “imposed” edged conditions.
Basic dihedral mechanisms are studied, and it is shown how the various interac-
tions ensure continuity of the total field. It is found that excellent comparisons with
Method of Moments results are obtained using fields of up to third order interactions
for dihedrals of 60° or greater. Also, it is observed that this solution is good for di-
hedrals that are as small as about one wavelength (maximum width of the dihedral).
Higher order interactions are required to get results for less than 60° dihedrals or for
smaller sizes. For the case of maximum scattering from a general angled dihedral,
the UTD terms that are dominant in between the strips of the dihedral are reduced
to simple forms.

UTD, being a ray technique, predicts infinite fields at caustics. It is therefore
necessary to introduce caustic corrections to obtain a bounded field at the caustics.
Caustic corrections of first, second and higher order are discussed in Section 4. In
Section 5 and 6, the two-dimensional dihedral solution, modified by the spread factor

and the caustic corrections discussed in Section 4, is used to get results for the top-




hat and bi-cone, respectively. Tt is shown that the curvature modifications and the
caustic corrections to the two-dimensional solution gives appropriate results when
compared with the body of revolution results even for very small sizes.

A modification to the two-dimensional dihedral is the parallel plate cavity. The
parallel plate cavity modified for curvature andvcaustics effects is the cake pan (shal-
low circular cavity). In Section 7, the parallel plate cavity and the cake pan are
discussed. For the cake pan, ray terms which contribute only in the principal plane
are included. It is found that for shallow and wide circular cavities good results
can be obtained, over a wide range of angles, by including only the ray terms that
contribute in the principal plane.

For the donut, in Section 8, the first and second order GO terms and its caustic
corrections are discussed. No creeping wave terms are included in this solution.

In Section 9, techniques developed for the two-dimensional dihedral solution and
the cylinder solution is also used to get backscatter results from multi-joined cylin-
ders. This model is used to investigate the scattering from geometries similar to tree
trunks and branches. In particular, two types of “tree” crook models are examined.
The UTD results are compared with the measurements and reasonable agreement is

found.




SECTION 2

| Theoretical Background

1 Introduction

This chapter contains a brief description of the techniques of Geometrical Optics
(GO), and the Uniform Theory of Diffraction (UTD) needed for the solution of the
configurations analyzed in this work. Details on these high frequency approximate-
solution methods can be found in References {1, 3, 4, 5]. Also, a recently developed
far-zone double diffraction coefficient is presented [2].

It is assumed t;hat the fields exhibit a time dependence of e/** which is suppressed

throughout this work.

2 Geometrical Optics (GO)

A brief summary of geometrical optics is given here. The propagation of electromag-
netic energy at high frequencies through isotropic, lossless media can be described
using GO. Thus GO provides a high frequency approximate solution to the incident,
reflected and refracted fields. In our problem, we will be concerned with the reflected
field. The GO can be obtained from an asymptotic solution of Maxwell’s equations
and it corresponds to the leading term of the Luneberg-Kline asymptotic expansion
for large values of angular frequency [1]. According to GO, electromagnetic energy

can be viewed as travelling along well-defined paths known as rays. The ray path, in




any continnous medium, may be determined using Fermat’s principle which states
the energy will flow along the path of shortest electrical length between any two
points. The shortest electrical path is one which results in the shortest propagation
time between two points. From Fermat’s principle, the law of reflection and the law
of refraction can be obtained. In geometrical optics, phase is proportional to the
distance along the ray path from some reference point, and the amplitude is gov-
erned by the conservation of power in a tube of rays. Figure 1 shows one such tube
of rays. The distances p, and p, are from a fixed reference point to the “caustics”,
where a family of rays merge or intersect.

In geometrical optics, like all other ray techniques, the fields can not be evaluated
at the caustics. At caustics, the approximation of power conservation in a tube of
rays is no longer valid. The field near a caustic appears to become infinite as a finite
amount of power gets squeezed into a vanishing area. The fields near caustics must
be found by other means. Chapter 4 discusses some of the caustics encountered in

this work.

2.1 GO Reflected Field

The GO reflected field from a smooth conducting convex surface with radius of

curvature greater than A, see Figure 2, is given as

= =, = PiP2 —jkar
E'(r)=F(Q,)-R e 1
=P e )

where
Q. = reflection point,
E' (Q.) = incident field at Q,,
s"= distance from @, to receiver,
R = the dyadic reflection coefficient,
R

— 2 5T st AT
= R,e_,_e_l_ + Rhe"e",

=

s,h = :Fl’
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Figure 1: An astigmatic tube of rays.
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Figure 2: Reflection off a convex conducting surface.




P} 2= principal radii of curvature of the reflected wavefront, and

11 (L + 1) L [wn)’ +(00) | (@) + (e.-)’]
Piz  2\p P ik R,
:El ( 1 1 )2 ( 1 ) 40080' [(@22) + (0.2) (@21) + (9”) ]
a3\ ")t
2|\t P ri  pi) 1O
LAeos [ ((07)' +(0) | (92.)2 +(©n)) 4P ' @
l@l' R| Rz R] Rz ’
where the plus sign is associated with p] and the minus sign with p}, and
@jk = X’_;fjk (3)
or
X,.0, X,.0,

o= (4)

X..00 X,.0,
Xi and X} are the principal directions of the incident wavefront on the curved
surface S at Q, with the principal radii of curvature p! and p, and ¢ is the angle
of incidence. (See Figure 3) ¥, and U/, are unit vectors in the principal directions of

S at @, with the principal radii of curvature R, and R,.

For the far-zone case, the Equation (2) can be simplified as

1 _ 1 [sin’6;  sin’6,
p, cosf | R, R,
1 [sin’8, sin’6,]° 4
:L-\Jms? o [ R R, ] " RiR, (5)

where 6, is the angle between the direction of the incident ray §' and 0,, and 0, is

the angle between &' and U,.

3 Uniform Theory of Diffraction (UTD)

Keller’s generalization of fermat’s principle allows one to include a class of rays

diffracted from electrical and/or geometrical discontinuities on a scattering or a
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Figure 3: Geometry of the description of the wavefront reflected from the curved
surface S.




radiating object; these diffracted rays exist in addition to the rays of GO which
describe incident, reflected and refracted rays.

In GTD, the initial value of the diffracted rays are obtained by multiplying the
incident field with a diffraction coefficient at the point of diffraction, analogous to the
reflection coeflicient for the reflected ray. The expression for the diffraction coefficient
depends on the scattering mechanism (edge diffraction, tip diffraction, etc.). The
application of GTD is limited only by the availability of accurate coefficients. The
Uniform Theory of Diffraction (UTD) is an improved version of the GTD in that
the diffraction coefficients remain valid at and near the shadow boundaries, where
the Keller’s original coefficient had failed.

Two major contributors to the diffracted field considered by UTD are diffrac-
tion from the edge and the diffraction from a curved surface (or the creeping wave

diffraction). In this work, only the edge diffraction will be considered.

4 UTD Edge Diffracted Field

The singly edge diffracted UTD field as developed by Kouyoumjian and Pathak [1]
is now introduced. The three-dimensional wedge diffraction geometry is shown in
Figure 4. Let an arbitrarily polarized field E_i(s’ ) which may be plane, cylindrical or
spherical wave be incident on the wedge. Such a field Ei(s’) can be represented as
a GO incident ray field. When an incident ray strikes the edge at Q. (say), then it
generates a cone of edge diffracted rays which emanate from Q. so that the cone half
angle = angle made be the incident ray into the edge tangent at Q. (i.e., 8, = 8.).
This is a consequence of che generalization of the fermat’s principle to the incident
edge diffracted.

The authors of [1] expressed the dyadic diffraction coefficients in a ray fixed
coordinate system which is centered at the diffraction point Q.. The orthogonal

unit vectors associated with the ray fixed coordinate system are defined as:
i = B;,: X $17 (6)
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Figure 4: Geometry for the three-dimensional wedge diffraction problem.
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and

5= [3,, X ¢ (7)
These vectors are shown in Figure 4. The diffracted field from a semi-infinite
perfectly-conducting curved wedge is given by the following expression:

d

E'()~B'(Q)- Dy 1y < (8
where
Q. = point of diffraction on the edge,
E'(Q.)= incident field at Q,,
s = distance from Q. to receiver,
p? = caustic distance for the diffracted ray,
D = the dyadic edge diffraction coefﬁcient,
D = -3,3,D, ~ $'3D», 9

or in matrix form

Ej§ -D, 0 E:, d :
Aol ~ ) (10)
Ed 0 -Dy || E, | Vole'te)

The ray fixed coordinate system ensures that the diffraction coefficient dyadic, D,
matrix is diagonal.
The soft diffraction coefficient, D,, is associated with the component of E-field
that is parallel to the edge, i.e.,
:-E=0. (11)
The hard diffraction coeflicient, D, is associated with the component of E-field that

is perpendicular to the edge, i.e.,

a-v(z-H) =0. (12)
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The soft and hard diffraction coefficients are defined as

_e"j’r/'|

+ cot (” ;nﬂ —) F (kLa™(87))

T {cot (” +P +) F (kLa*(8*))
+ cot (" ;nﬂ +) F (kLa‘(ﬁ"))}] ,

where

a*(B8) = 2 cos? (M——(—ﬂ—)) )

2

and N* are integers which most nearly satisfy the equations
2raNt — (B) ==,

and
2rnN~ - (B) = —m,

with
B =pB* = ¢t¢

F(x), where x=kLa, is a transition function defined as

Flzy=27 T e’i’/oo e dr
(z)=25| vz | -

(13)

(14)

(15)

(16)

(17)

(18)

The magnitude and phase of F(x) is shown in the Figure 5. For x small (X < 0.3),

F(z) ~ (\/mc ~ 2z — :2.,,26—:'%) G(54%)

(19)

When 0.3 < z < 3.5, linear interpolation is used as an efficient numerical means of

determining F(x) so that

F(z) = F(z,) + An(z ~ z,).

13

(20)




~ %0
e (1)
—ss 2
mw,-u&."“i 1 —fas §
oe— e o M
. s %
osp— %10
I | | i A
N e RN A NTTIT| AT B R T
000! 0.0l 'Y .0 0
L (V]
Figure 5: Magnitude and phase of F(x).
For z > 5.5 one finds that
Fla)~142 -3 ;18 15 (21)
2% 47 8z% ' 162"
The diffracted caustic distance, p?, is defined as
1 1 #a.-(5-35)
11 _n-(s-3) 22
PPl acsin’B, (22)
L is a distance parameter, where
Li.r = s (pr" + ")pl ] sin2 . (23)

R DICED)
The parameters p'" are the (incident, reflected) radii of curvature at Q, in the plane
containing the (incident, reflected) ray and é is the unit vector tangent to the edge at
Q., 1. is the associated unit normal vector to the edge directed away from the center
of curvature, a. > 0 is the radius of curvature of the edge at Q. and 8, is the angle

between the incident ray and the tangent to the edge as shown in Figure 4. The
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a

unit vectors &’ and & are in the direction of incidence and diffraction, respectively.
p','2 are the principal radii of curvature of the (incident, reflected) wavefront at Q..
The supersc.ipt n, o on L denote tha. the radii of curvature are determined at the
reflection shadow boundaries of the n and o faces, respectively. The reflected field

caustic distance in the plane of the reflected ray and edge tangent is given by

1 1 2(a.a.)(8.R)
p_; - E ~ a.sin’g, (24)
where
7. = normal to the surface at Q.,
n,. = normal to the edge curvature at Q.,
3' = incident ray direction,
a. = radius of the edge curvature.
The diffraction coefficient in Equation (13) may be simplified for the special case
when the source and the receiver are in the far field so that F[x] is approximately
equal to 1. For this case the diffraction coefficients, D.; reduce to the Keller’s

diffraction coefficients in Reference [3], or

Dottt = g o () + oo (o)

¥ {cot( 2nﬂ+) + cot (" ;nﬂ+)}] ,  (25)

..
—e 77 sin -’5

nv2rksin ﬂo

which may also be written as

sh(L ¢’¢ ﬂn) -

1 1 1
- ; O+ * (26)
[cos (»’;:) — cos (d’né ) cos (E) — cos (-"i)J

The diffraction coefficient may also be simplified for the special case when n=2

(half-plane)

(27)

D,n(L,¢,¢',8,) = —e ™ {F[kLa(ﬂ‘)] FlkLa(Bt))

2v/2mksin 8, | cos(8; /2) * cos (B} /2)
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5 Scattering from a Strip in the Far-zone

A study of the scattering from a strip is considered because the strip is the basic
building block for the structures discussed in this work. For the case of far-zone illu-
mination and observer, the first order bistatic scattered field from the strip contains
only the diffracted field from two edges. The GO information need not be specifi-
cally included, since it is contained in the GTD far zone diffracted fields. Consider
the geometry shown in Figure 6. The length of the strip is given as I. The basic

geometrical parameters needed are
¢1"¢'| =¢-¢ (28)

¢+ ¢\ =+ ¢ —-2¢, (29)

{w+¢u—¢' ,0< ' <7+ ¢, (30)

/ —_—
? =

Inr+d,—¢d ,m+¢, <P <27

T+, — ¢ O<od<m+¢,
$2 = ’ (31)
Int+do—¢ 7+, <P<27w
U, = iU, Da(Q1) + Dup(Q2)] e (32)
where
E, . E parallel to wedge
h H, , E perpendicular to wedge
and
. —e i 1 1
Ut =Ui== T ~ |+
h h 2V 2k (cos (-——“';d’ ) cos (9#*))
e I/ 1 1 e
U, —~ F ; eM(cditendr) 34
h 2y 2nk (cos (6%21) cos (h—j‘h)) (34)

It is observed that both diffraction coefficients become infinite at the reflection
shadow boundaries (i.e. ¢ + ¢, = 7 and ¢, + ¢, = 7; or ¢ + ¢ = 2¢, + 7) and at

the incident shadow boundary (forward scatter) (i.e. ¢, — ¢) == 7 and ¢, — ¢, = 7).
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Using Equations (28) through (31) into Equation (34) and constraining to the
region 0 < p< v+ ¢,and 0 < ¢ < 7+ ¢,, gives

s

1
) ¥ cos (¢+¢'2-2¢.,))

—yxfd
rise i 1 ) pIRl(con(d—do) +cus(d' ~ ) (35)

1
h 2v/2xk (cos ( ) + cos (3—""’42'”;'”1)

Notice that for this range the scattering along the incident shadow boundary is not

—e’]*/l
Ut =
h " 2V27k \ cos (

+

possible. Combining terms results

7

Ut g =€ bt (228550 ) (252
h h 2\/2—1r—
2] sm kl cos (M;;Zﬁ) cos (-:fﬂ))
cos (u‘b;—2 )
2 cos (kl cos (¢+¢2-2¢.,) cos (d’-z.»')) } (36)

-9’
cor (52)

In general, the case of infinity along the reflection shadow is more common and

+

is treated in detail to show how a continuous result is obtained. Near the reflection

shadow boundary

cos (M’é:ﬁg) = cos(7/2 + €) ~ Fe. (37)

Using Equation (37) in Equation (36) gives

Ui = U"-e—j*“ +jklcos (¢ — ¢,) + — L ~ ! (38)
1 h V2rk 2 cos (9;—)

For broadside backscatter case

i _p—im/d
' Ut =i =S +ikl+1) = U™+ U 39
. i =V Rk + 1] =U; (39)

where U'!"",;is the PO term and U° is the correction to PO. Simplifying the U™ term
h o h

‘LIA!

ure = sUi =
h T h2nk
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12 2
oy = 27 [%] = 21% (41)

atrvip

gives the expected PO result for backscatter from broadside of a 2-D strip.

Results of fields backscattered from a strip are presented in Figures 7 and 8. The
UTD solution is obtained by the above formulation. Comparing the UTD result
with the moment method result, it is observed that using the single edge diffracted
fields from the edges gives a good approximation to the exact solution for the main
and a few side lobes. For the TE, case, we note that near ¢ = 0” and 180" the first
order UTD solution is not accurate. This is a consequence of the higher order terms
not being taken into account. However for the T M, case the higher order terms are

negligible. See References (6, 7, 8, 9] for higher order effects on the strip.

6 Double Diffraction Formulation

Previous solutions of the field diffracted by double-edge structures used the UTD
in its original formulation argumented by slope diffraction (especially for the soft
polarization) to give useful results when the distance between the two edges is very
large. However, difficulties are present whenever the second edge is located in the
transition region of the first edge and the diffracted field is calculated in the transition
regions adjacent to the incident or reflection shadow boundaries of the second edge.
These problems are caused by the rapid, spatial variation together with a non-ray
optical behavior of the field incident on the second edge after diffraction from the
first. It is obvious that the angular range of the overlapping transition regions
broadens as the distance betwec: '.e edges decreases. Part of the difficulties are
removed by a spectral extension of the UTD in References [6] and [7]. This solution
is uniformly valid at any incidence aspect, but it is restricted to those observation
aspects which coincide with diffraction shadow boundary (DSB) or the diffraction
reflection shadow boundary (DRSB). (See Figure 25.)
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Figure 7: Backscatter field from a 12 in strip at 10 GHz (soft case).
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A closed form solution for the doubly diffracted field in the iar zone from a pair of
pafa.llel wedges is presented in Reference [2]. As shown in Section 3, these expressions
exhibit the proper discontinuities and singularities so that when combined with the
singly diffracted field, the field is continuous and uniform. For joined wedges, shown

in Figure 9, the angle parameters are defined as

$, =7+ (=1)"(mim —¢}); p=1,2, (42)

and
¢, =7+ (-1)(n,w — ¢3); g=1,2. (43)

The pattern function of the field doubly diffracted from Q, and Q; is given as
2 2
P,‘,',(QHQ'I)"’ZZP,’; (@5, Bq) - (44)
p=1g=1
By only retaining the first nonvanishing term in the asymptotic expansion for kd

large, the following closed form expressions are obtained

(=1)"(=1) a,aq
P, (®,,®,) ~ —: -
(@5, 2,) 8rj(nin2)? sinz(%';—)sinz(z%ﬂ;

Flkda,] — Flkda,) (3;;) ,

for a TM plane wave (with the electric field parallel). For a TE plane wave ( with

(45)

ap — a4

the electric field perpendicular),

¢
Py (®), ®g) ~ ~3 1 cot (51) cot (&)

wIin ny n, 2n,

a,Flkda,) — a,F[kda,] e~i*
ap — a4 ( \/it—d) ’ (46)
and
a; = 2cos’[(®; — m — (—=1)'2n7 N;)/2] (47)

where n = n, fori = p, n = n, for i = q, and N, is the integer that most nearly
satisfies

o,
2nn’

N; = (-1} (48)
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F(x) is the transition function that has heen defined for the single diffraction case.
~ If the two wedges are separate, the above equations are slightly varied. For the

separated wedges shown in Figure 10, the angle parameters are defined as

Qp =7+ (——1)"((}3, - 7’P¢’l); r=14, (49)
Qq =%+ (_1)q(¢2 - ﬂfl¢’2); g=14, (50)
with ; = 1 for i=1, 2 and 7, = —1 for i=3, 4. The pattern function of the field

double diffracted from Q, and Q; is given as

P, (@1@)~ 33 X% b (3, 3)) + P (8,,8,)], (51)

p=1g=1 2

where x; = 7, in the TM case and x; = 1 in the TE case.

7 Limit Forms of Double Diffraction Coefficients

When a, and a, are such that they are approximately equal but not close to zero,
Equations (45) and (46) tend to become of indeterminate form. This can cause
numerical problems on the computer. Equations (52) and (53) are parts of Equa-
tions (45) and (46), respectively, that may have such a behavior. To get around this
problem on the computer, limit forms are used in the approximate region. Defining

_ Flkda,] — Flkda,)

T, o a (52)
and 4
7, - 2oFlkda;] - a,Flkda;] (53)
a'P —
and noting that
kdlim kA% + € — Flkdao] 4y pida) o, (54)

0 kda, + € — kda,
where the / denotes diffraction with respect to the argument of the transition func-

tion,

j",‘; [ 1oz = - 100, (55)

23




Figure 9: Joined wedges geometry.

Figure 10: Geometry used for separated wedges.
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and
Flz] = 2j/ze’® / e 7 dr, : (56)
equations for T, and T}, that are valid when a, approaches a, may be derived. From

Equations (54) to (56) one obtains,

dF ir?
il Jx e J7
i = [ (\/_ +2jVz)e / d‘r] (57)
dF 1. . .
7 = "3 29z — (1+ 2j2) F(=)], (58)
and as a, — a,, from Equation (52)
lim T, = [(—l— +jkd) Flkda,) — jkd] . (59)
ag—ap 2a,,

Equation (53) may be rearranged as

Flkday]  Flkdag)

Ty = apa, "»ap - aq"” ’ (60)
and
all_lfrl' T, = (kd)2 aa Pdzx [F[z]] (61)
Using Equation (58) in Equation (61)
(.1 .
011_1‘1‘1"’ Ty = kda, [( dea,,) Flz] - ]] . (62)

Thus, when a, and a, are almost equal but not close to zero, Equations (59) and
(62) may be replaced by Equations (45) and (46) for T, and T}, to insure correct

results and prevent computer errors.
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SECTION 3
UTD 2-D Analysis of a Dihedral

1 Introduction

The dihedral has been in use as a scattering device for many years. Some studies
conducted on the dihedral at The Ohio State University ElectroScience Laboratory
are given in References {10, 11, 12, 13]. They entail mostly measurement studies
with some basic analyses. More recently, renewed interest in the dihedral has led
to more detailed analytic studies. A Physical Optics for a right angled dihedral is
analyzed with full polarization scattering matrix in Reference [14]. Physical Optics
and the Physical Theory of Diflraction are used to predict the results for dihedrals
in Reference [15]. In Reference [16], a near zone type UTD plus an “imposed” edge
diffraction extension is used to get the backscatter results for the dihedral in the “far
zone” by extending the distance parameter for the near zone case. The use of UTD
to study plate interactions in the far zone is conducted in Reference [17]. This type
of solution is improved and extended to specific dihedral problems in Reference (13],
and also briefly discussed in this report as a foundation for the other scatter objects
analyzed in this work.

As seen in the previous section, the field of a strip can be obtained by including
the diffracted fields from the two edges, and the infinity from edge diffractions com-
bines to give a bounded result in the specular direction. When more than one strip

is used in a model, the singly diffracted field from the edges will act as a near-field
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sonrce which can create reflected and diffracted fields from the other strip. Thus,
interactions between the strips are necessary to provide a more accurate pattern. In
general, these interactions are present only over a limited region which may be deter-
mined geometrically. These higher order interactions also provide the cancellation
of infinities to provide a bounded result. It will be shown that interactions up to
third order are sufficient to obtain results with engineering accuracy for the case of
two-dimensional dihedrals of 60° or greater and for sizes larger than one wavelength
in total length.

The UTD interactions that have been included in the analysis which are contained
in the 2-D computer code are shown in Figure 11. The single interaction fields in-
cluded are simply edge diffraction (D) terms. The second order interaction fields are
the reflected - diffracted (RD), diffracted - reflected (DR), and diffracted - diffracted
(DD) (double diffracted) terms. The third order interaction fields are the reflected
- reflected - diffracted (RRD), diffracted - reflected - reflected (DRR), reflected -
diffracted - reflected (RDR), reflected -diffracted - diffracted (RDD), diffracted -
diffracted - reflected (DDR), and diffracted - reflected - diffracted (DRD) terms.
Triple diffractions have not been included. Any of these terms could be critical es-
pecially at a shadow boundary. As a general rule, by knowing the position of the
source and the receiver, and by drawing ray diagrams, it is simple to predict the
important terms by observing the directions of the bounces.

The solution discussed here is based on a study of strip interactions given in
Reference [17] and a study of double diffraction in Reference [2]. The strip interaction
in the previous study, however, did not provide the necessary accuracy for dihedral
configurations. The two dimensional geometry studied is shown in Figure 12. The
characteristic features of our analysis allows that : (i) the length of each strip may
be different, (ii) the angle between the strips may be varied, (iii) back and bistatic
scattering may be treated, (iv) linear and elliptical polarization can be handled, (v)

the solution is valid for small sizes in terms of a wavelength.
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Figure 11: The interactions considered.
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Figure 12: Two-dimensional view of the geometry studied.
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2 Basic Dihedral UTD. Mechanisms

This section discusses the basic UTD terms that provide the characteristic dihedral
pattern. In the case of the main beam of the pattern, the RD and the DR UTD
terms along with the single diffracted (D) term from the wedge formed at the junction
between the two intersecting strips provide the necessary fields. The specular from
the individual strip faces is produced by single diffraction (D) from the ends of the
strips and the DR, RD and DRD terms between the strips. The double difiraction
(DD) across the face of the dihedral can also be important.

As ~mentioned above, the RD and DR terms along with the D term from the
junction provide the starting point for determining the scattering from an arbitrar-
ily angled dihedral. These terms, in general, look quite complicated. In some special
cases, they can be reduced to simpler formulas. As expected, in the case of backscat-
ter for a wedge angle of a = 90°, the well known PO result for a dihedral can be
derived.

From the equations in Section 2 and for angles derived from Figure 13 for bistatic
scattering from a general angled dihedral, the diffracted term from the junction is

_pi e T+ (- ¢) T (¢ ¢)
UP = U"‘"2n\/m {cot (——z—n—) + cot (.—_2;:_—)

+R.» [cot (f—f%—w—)) + cot (-”—-——%’ﬂ)] } (63)

In Figure 13, D,R and RD, terms are due to reflection from strip 2. The terms
D:R and RD, are due to reflection from strip 1. The basic geometrical parameters

for the D, R term are

d=7m—-¢ ; dpp=n1~2a-¢ (64)

b+ =2r-2a+¢-¢ (65)

& —¢', =-2a+¢+4¢. (66)
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Figure 13: The DR and the RD terms (only DR and RD, shown).
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For the RI)| term, the angles are the same as for 1, R with ¢ and ¢’ interchanged.
. The term RD; has the following parameters

$r=n—(a+¢) ; p=7x-a+¢ (67)
G+ =2xr—-2a+¢—-¢ (68)
¢~ =9¢+4¢, (69)

and for the D, R term, the angles are the same as for RD; with ¢ and ¢’ interchanged.
The RD and DR fields are given by

UPR L kD i R h_e-—jrh
a,h it Zm
IR S T S L c...(r.tz_..’-h) c,,,(g—g'-za
[(cos (.'? +¢;—2n) R, o (d—d:;—zn)) e 7 S )
—-——1———— - ___1____ 25k, cos 2222 ) ¢ Q-ﬁ'-nu)
* (°°‘ (*‘ﬂ[i) Roi cos (_¢—¢;+z..)) e (= ) ( 7 (70)
and
. . il
URI): + Ullzlf = U;‘hR,'h.z_e—\/%r__:'
v p 1 2,‘&1,.-(..(&9_') M(!_!I_,n)
[(COS (%Q_') Rs,h cos (Q_-_d’.;*ﬁ)) e ‘ 2 ]

_r R S L cus(f—'tiﬂ) c..,(t:;ﬁ:tz_f:)
* (cos (i?i) R"hcos (Qi;il‘!)) ¢ ’ ] , (71)
where the reflection coefficient, R, ,is ¥ 1.

It is noted that the term D, R is present in the region

T l;sin(a) — I, sin(2a)
*"32 < ¢ <arctan [lg cos(a) ~ I, cos(2a) (72)
and RD, is présent in the region
T, l;sin{a) — [, sin(2a)
a-3< ¢ < arctan [lz cos(a) Iy cos(2a)| - (73)
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D; R is present in the region

I;sin(a)
arctan [11 1 cos(a) <¢$p<m-a, | (74)
and RD, is present in the region
arctan _bsin(a) <¢d<T—a. (75)
l; — I cos(a)

The case where a is 90° is considered first. It is well known that the diffracted

field from the axis of the dihedral will be zero for this case. Using

cos (¢::¢’ g) = Fsin (¢j2:¢') (76)

in Equation (70), the following is obtained

_ eI
Ul) R + URI). — U: €
'2\/21r

cos [2k1| sin (%‘1’—') sin (“—}'ﬂ)]
o sin (M)
sin 2kl sin (‘Hd' ) sin (d’-—zﬁ)
e )

-2 (77)

With a small bistatic angle and ki, large, the second term is dominant. Thus, the

above expression may be written as

l S N R sin [2kl| sin (M) sin ( )]
Uionigam ' = Ui pe’ “7":—\5“‘( 2 ) { 2Kl sin (52 ) sn (52) [ (78)

For the backscatter case, with strips of equal length, from Equations (72) to (75),
only D, R and RD, are present for the range 0 < ¢ < x/4. Also, only D, R and RD,

are present for the range /4 < ¢ < 7/2. For the backscatter case

U R = U e/ \/—sm(cb), 0<¢<n/4, (79)
and
Uphatlalt — U.:,,,e"“-f-} ces(¢); w/4 < < /2. (80)
a3




Notice that for ¢ = 45° this result agrees with the well known PO result. Figure 14
shows an excellent agreement of the result obtained by E('luations (79) and (80) with
that obtained by the UTD computer code (with all terms mentioned above).

Note that in Figure 14 there is a slope discontinuity in the dominant UTD (RD

1 T f UTD (Dominaat)
' ' o UTD (Total)

40 50 60 70 80
@ (deg)

Figure 14: The dominant UTD terms and the computer code results for backscatter
for 9 in 90° two-dimensional dihedral at 10 GHz.

and DR terms) at ¢ = 45°. The DD field across the face of the dihedral balances this
slope discontinuity. For the vertical and horizontal polarizations, Figures 15 and 16,
respectively, compare the UTD with and without the DD field across the face of the
dihedral and the Method of Moments solution {18, 19] for the backscatter case with
¢ = 45°. To illustrate this point further, consider the 4° bistatic case. Figure 17
shows the DR and RD terms for a 4° bistatic angle. Note that the slope discontinuity
of the backscatter case now spreads out and makes the pattern discontinuous. This
is due to different boundaries of the various RD and DR terms (Equations (72) to
(75)). Figure 18 shows that this discontinuity may be corrected by including the
DD term (see Section 4) across the face of the dihedral.

34




MAG. (DB/WL.)
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Figure 15: Contribution of the DD across the face of the dihedral for the backscatter
case at 45° incident for the vertical polarization.
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Figure 16: Contribution of the DD across the face of the dihedral for the backscatter
case at 45° incident for the horizontal polarization.
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Figure 18: DD term used to eliminate the discontinuity.
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Now consider the case when a is not close to 90°. Tt is expected that the maximum
scattering will occur when ¢ ~ ¢/ — 2a = —7 or ¢ - ¢ + 2a = x. In this case, either
the DR or RD is a major contributing factor along with the diffraction from the joint
of the dihedral. Notice that the first condition is satisfied if ¢ > ¢’ and a > 90°, or
¢ < ¢ and a < 90° (DR or RD, term is the major contributing factor and only
one term is present in a given region). The second condition is satisfied if ¢ > ¢’ and
a <90° or ¢ < ¢' and a > 90° (RD, or D,R term is the major contributing factor
and only one term is present in a given region). Hence, it may be assumed that this
is a region where diffraction from strip 1 and reflection from strip 2 is present. It is
also observed that when the D, R term is large, the first cotangent term of the singly
diffracted term (Equation (63)) is also large. On the other hand, when the RD, term
is large, the second cotangent term of the singly diffracted term (Equation (63)) is

large too. For € small, the case when

$-9¢' ~2a=-7+¢ (81)
cos (?:_‘%‘_2_") -5 (82)
and
T+ (p-¢))  2a
cot (——Q—n—-———) = —e;, (83)

is considered. First, the contribution from DR and the first cotangent term of the

single diffraction may be simplified to

NS LA —2 vkl y r:-s(fﬁL"-")( 2
U”l"_:"nf_ml = € _“ 7 7 + _] 84
dominani s.h 2\/2—7‘r—k‘ € € ¢ ( )
DyR+Dap cor ’ 1 l ¢+ ¢’ - 2a
Udnmi:nnl =Uen eJ /‘—ﬁ o8 (——T—_) ) (85)
Using Equation (81) in (85) gives
NP |
Ui’ = ULy S sin (4). (86




Next, the contribution of R, and the second cotangent term of the single diffrac-

tion are obtained as

B LYA
U"”I"”’?nd.rol — Ul —€ J”/
dommant — Yah 2\/2_7}76

L
25kl c‘.s(i‘-"—‘;_"‘) sin(')n-}-%)

2 _«x
e +1cot(" ") : (87)
sin (2a+'§) a a

At this stage, to simplify Equation (87) further, it is necessary to assume that a is

close to 90°. Consider § to be a small angle such that
a=mn/2+6. (88)

Now Equation (87) may be written as

1
RIN 4+ Damd con i _zj.»,,a....s(um)
U 1 2nd.cot __ U;.he_nr/-le H

dominant

b cos (¢ e 2a> {sin [25kl' cos (w;;z_!)] } . (89)

v 2 26kl, cos (2#2)

Again using Equation (81) in (89) gives

Ui+ Danaen _ Ur’hejr/le—ﬁkl.bsin(a')
’v

dominant

Iy . .. ]sin{26kl, sin(¢')]
7’}5‘“("5){ 26k, sin (¢') } (80)

Had the RD, term been large, the result would have been the same as Equations (85)

and (89). However using the condition for maximum scattering for this case (¢ —

¢’ + 2a = =), Equation (85) becomes

. . {
Usorimani™ ™ = Ul e —L sin (2a — ¢') (91)

VA
and (89) becomes

RDy+Dypg.c0 ; -2 o ot
U [ Indycol _ U:.he]n/le 25k, 8 sin(2n - ¢')

dominant
I , [ sin [26k1, sin (20 ~ @)
5 (2a - ¢) { 26kl sin (2a — ¢') }

(92)
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In the region where RD; is large, the following equation would hold

i ey b
Usominans™ " = Uy pe’™ ' sin (¢' + @) (93)

and

U;’?R"‘D?nd,col — Ui hejr/-te—ijl;bsin(d,'+n)
0 s,

minant

L ., ., sin [28kl; sin (¢’ + a))]
— . 4
/(e +°‘){ 26kl sin (¢ + @) (94)
On the other hand, in the region where D, R is large
Ui = U™ e sin (4~ a) (95)
and
Uﬁ%:ﬂ’:’:‘na.m. - U-ih gi™/1g=2iklzb sin{¢’—a)
L, . ., sin [28kl, sin (¢’ — a))
— - . 6
VA sin (¢ — a) { 26kl, sin (¢ — a) (96)

It is important to emphasize that Equations (84) to (96) are present over regions
as given by Equations (72) to (75) and are valid for one of the two cases of max-
imum scattering as mentioned earlier. Figures 19, 20 and 21 are for equal length
strip dihedrals of a = 92° (4° bistatic), 95° (10° bistatic) and 110° (40° bistatic), re-
spectively, and compare the results obtained by the dominant UTD terms with that
obtained by the UTD computer code. Good agreements are obtained in all regions
except where the speculars from the strips are present, which are not included in

the dominant UTD terms.

3 Specular Return From Dihedral Strips

As pointed out earlier, the specular from the individual strip faces is produced by
D from the ends of the strips and the DR and DRD terms between the strips.

The importance of D and the DR termis is illustrated by the following. Consider
the geometry shown in Figure 22. It is observed that the singly diffracted field
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Figure 19: The dominant UTD terms and the UTD computer code results for 9 in

92° 2-D dihedral at 10 GHz (4° bistatic).
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Figure 20: The dominant UTD and the UTD computer code results for 9 in 95° 2-D
dihedral at 10 GHz (10° bistatic).
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Figure 21: The dominant UTD terms and the UTD computer code results for 9 in
110° 2-D dihedral at 10 GHz (40° bistatic).
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Figure 22: Cancellation of infinities of diffracted and diffracted-reflected terms.

D, appears to leave an infinity at the reflection shadow boundary. The diffracted
- reflected field D,R also appears to leave an infinity along the incident shadow
boundary. However D; and D; R combine to give a bounded result.

The diffracted field is

U™ = U, ,D,n(Qcr)e™*", (97)
where
; E', E parallel to wedge
ah = . . (98)
H', E perpendicular to wedge
and
D —e ! R 1 99
l.’l(QCl) - 2‘\/27[’,& cos (2%?;) + a,'l'c_os—F';Tl) 3 ( )
where the reflection coefficient, R, , = F1. Along the reflection shadow boundary,
cos (4,l ; ¢') = cos(w/2 — €/2) = €/2. (100)
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For the DR field,
U”?" U, h 1h cll(Q ) _’k” (]01)

where

—e=Iw/4
Da,h(Q'?) = 2\/51—‘_~ (cos (i_‘) + R h;s—(—%—;zl—j) . (102)

2
Along the incident shadow boundary,

co (d,2 3 % ) =cos(m/2+ €/2) = —€/2. (103)
By adding the singular terms of D, and D, R, the following is obtained

Ucmqulnr tolal - U [ e—J - (2) —ikp + U' R e_jr/“ (:—2—) e—jk”.’ (104)
vh a0 2\/2?' 4 h T 2 /'“—27rk € 1]

where the phase contributions (see Figure 23) are

eI kT okl o)+ ) con(@)] (105)
and
e=Ikrr — mikr g =Kl (HRE +1) cos(d4)). (106)

Equation (104) can be written as

' e /! o ik[AH cos(e cos(d)+ 51 si
U.«nngulnr total _ 1 R, sk|d+ (&) + 72 cos(d)+ 51 sin(o)
— Yahtts,

’ 2\/21rk

sm(é)

oy . sin(kl$ sin(¢)
2 —2 1%,
{ 7kl sm(¢)[ LL sin(g) (107)
As € approaches zero, Equation (107) becomes
4 sl
Unmgular tofal _ U,:.hRS.h € e~1k[d+lru.<(¢)] {klsm(dr)} . (108)

Vark
Note that this gives the PO result for a strip of length I.

It is observed that for the backscatier case from a 90° dihedral, the DR term is
shadowed due to the diffraction reflection shadow boundary (¢ = 90°). As pointed
out in the next section, it is the DRD term that takes care of this discontinuity.
Figure 24 shows that the inclusion of DRD term ensures the continuity and gives
the correct result. Note that at ¢ = 90° only the 9 in strip is visible, which by PO
gives a result of 10.39 dBm. The result obtiined by Figurc 24 is 10.26 dBm.
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Figure 23: Phase of D, and DR terms.
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Figure 24: Importance of DRD term. The results are for a 9 in 90° 2-D dihedral at
10 GHz.




4 Continuity of Fields by Including Double Diffrac-
tion

Figure 25 shows the shadow boundaries that can result after the first diffraction.
The diffracted field is discontinuous across the diffraction incident shadow boundary
(DSB), and the diffracted -reflected field is discontinuous across the diffraction reflec-
tion shadow boundary (DRSB). The D, D, field compensates for the discontinuity of
D, and D\ R fields. The double diffraction formulation, for separate wedges, as given
by Equation (51), has 16 terms. Across the DSB or DRSB one of the terms becomes
infinite. This term is determined by the values of ¢, and ®&q (Equations (49) and
(50)) which make the cotangent (cot (23;{1—) and cot (2%“;)) unbounded. Thus, any
term can become singular depending on the geometry and the position of the source
and the receiver. As shown in an example below, the same holds true if the wedges
are joined.

Consider the case when the two wedges are not joined, as shown in Figure 26.
Since * — (¢ — ¢',) = 0, cot(0) = oo, and 7 + (¢, + ¢,) = 47, cot(r) = oo, at the
boundaries, thus the term P(®,-),®,-,) will balance the singularity of the singly
diffracted field. The terms P(®,=1,®¢=1) + P(Pp=1, $,=2) + P(®,=1, B5=1) balance
the discontinuity that results from the diffraction by the edge @, being shadowed
by edge Q. The terms P(®,=2, ®4=1) + P(®,=3, Bg=1) + P(®p=4, P,=,) balance the
discontinuity that results from the diffraction by edge @, being shadowed by edge
Q2.

In the above sections, the doubly diffracted field was necessary to get the con-
tinuity of the fields in two cases. (See Figures 24 and 18.) In both of these cases
the discontinuity is a result of being on the DRSB. In this section, a case where the
discontinuity is along the DSB is considered. It is shown mathematically, as well
as by plots, how the inclusion of doubly diffracted field compensates for the singu-
larities and discontinuities. In Figure 27, ¢, ~ 0 and ¢; ~ 0 i.e., both incidence

and observation aspects are close to grazing. Note that for ¢, < 0 and ¢ > 0,
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DIFFRPACTINN REFLECTION
SHADOW BOUNDARY (DRSB)

¢+ b=

DIFFRACTION INCIDENT
SHADOW BOUNDARY (DSB)

pi- g=T

Figure 25: Illustration of diffraction incident (DSB) and diffraction-reflection shadow

boundary (DRSB).

Figure 26: Balancing of fields for disjoined wedges.
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Figure 27: Balancing of fields for joined wedges.
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diffraction from D, D: and D, is present But for ¢y < 0O and e, < 0, only
diffraction from D, and Dj is observed. Details of the equations below are given in
Appendix A. The contribution of the fields singly diffracted by @, can be expressed

as a singular contribution given by

e—j'x/l €2 s
P, .(Q)= WA F - cg] e (1 + sgn(ez)] (109)

and a non-singular contribution of

" —e~ir/t 2r +€; — €
P - 2 (52 )
m(Q1) 2nV2xk «© 2n
2 .1
Fcot (—L’—;L'—E)] e_""‘é (1 + sgn(e)]. (110)
n

Similarly, separating P., (Q:) into a singular and a non-singular part, where the
singular part is given as
P ~ e—ir/} € - ikd
(@) = S [ et~ sgnie) ()

—e%

and the non-singular part is

" ' —e i/t 2T — € + €
@) - 2 o (Bt )
m(Q2) 2nv2nk ° 2n

F cot (E—%i)] e [%] (1 - sgn(e))]. (112)

For the single diffracted field from Q;, the singular term is given as
— e_j'r/" l
(@) = Vark leg — €

The double diffraction term obtained by seiting p = 1 and ¢ = 1 in Equation (44)

/
Pr am

] ejlrh(c.-(q)e—jkd' (113)

compensates for the discontinuity and singularities of the single diffracted fields. This

term is given as

_e-ix/t [ €28gn(e€q) - € sgn(e,)
Pﬁ,h(q’p:,,éq-_-]) = € { 1 2 e—Jk"

Vark € ~ €

(114)
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Adding all the singular terms of singly diffracted fields from Q,, Q2 and @, and
doubly diffracted field from Q; and @2, Equations (109), (111), (113) and (114), the

following is obtained

i/ 1 ejkh(u—‘:') _ 1+ lﬁe-jkd

P.n':rgular total —_ . _ 115
o V2rk |6 — € € — € 2 (115)
Now for ¢, and e; zero, the above equation becomes

P.n'ngular total __ _eiﬂ'/4_l"_ - .I_._j:_l_ﬁe_jkd. (116)

em V5 2 =«
Note that the first term is equivalent to a PO result of the strip of length h.
The second term is the correction to the PO. Figure 28 shows that the inclusion
of the diffracted-diffracted term ensures continuity. Thus, the UTD formulation of
the double diffraction presented in [2] provides the compensation of the singulari-
ties, so that the leading term of the total scattiered far field is well behaved in the
neighborhood of the shadow boundary (DSB) of the diffracted incident field.

Now, consider the continuity of the non-singular part of the diffracted terms. It

is also noted that P’

c.an

(@) vanishes due to shadowing by the edge Q; (e2 < 0),
and similarly, P, (Q,) vanishes due to shadowing by the edge @, (¢, > 0).
From the discussion in the beginning of this section, it is expected that the term

Py(®,=2,8,-1 = €) ensures continuity of P., (Q;). From Equation (110), when

€& ~ 0, _
P = —2::;2/_'& cot (2"2:") {1 + sgn(e)} e+ (117)
and from Equation (42) and (43),
b ,=m+(mr—(yr—7m—¢))=2r+¢ (118)
b, =m—(or—(nar — 7 —€;)) = €2 (119)
Ny = 2’;:;' ~1 for 0.67<n<?2 (120)

ap-2 = 2c08? [(2m + €,)/2 — 7/2 — 2n7/2] = 2sin* [x(1 -- n) + & /2] (121)
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Figure 28: 1mportance of the doubly diffracted term for the field to be continuous
for TE case.
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for n=3/2

-1 271 + ¢ 2n,
P = () (2
47(']7!]‘".2 2n. €2
{63/2 — 2\/2mkde}/4e7™/ } e~tkd (122)

2 - ¢€2/2 kvd

again neglecting terms of order ¢ and €2,

e~ i/ : 2 + ¢ ,
Py = ———e"* cot ( ).s —ikd 123
h i Vook co o, gn(ez)e (123)

Thus P,, + P, (Equations (117) and (123)) is continuous across the shadow bound-
ary. Similarly it may be shown that the term Pu(®p=1,Py=2) ensures continuity of
P (Q2).

However, for a TM plane wave illumination, P, (Q,) and P. (Q;) vanishes rapidly
at €, = €2 = 0, so that no discontinuity occurs due to the shadowing by Q, and Q,.
However, the terms P.(®,-2, ®,~1) and P,(®,-,,®,-2) provide a contribution which,
as expected, is continuous across the DSB and provides a smoother transition from
the lit into the shadow region of the field for rays singly diffracted from edges.

From Equation (45),

o 2¢2/4 1) et
PiFp=2:90=1) = ~ g {,,-nz (52 () } {2} od (124)

2"|

€
2

1 1 e k1 1
= —— . 25
8mjni \ sin? (Hi—l) kvd (125)
Figure 29 shows how the result is affected by including the DD field for the case

when the TM plane wave is incident.

5 Mdre Multiple Plate UTD Terms

The previous sections discussed the plate interaction terms that provide the ba-
sic dihedral characteristic pattern. This section briefly outlines other higher order

mechanisms that contribute to the pattern. Depending on the angle of the dihec'ral
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Figure 29: For the TM case, the doubly diffracted field provides a smoother transi-
tion. :
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and on the histatic angle any one of these terms can he important. In general, as
the frequency decreases, that is, as the size of the object in wavelengths gets smaller,
more higher order terms need to be added.

The various UTD terms can be derived by using combinations of the theory in
Section 2. The importance of single diffraction (D), DR and RD terms in giving
rise to the main beam of the pattern, and the single diffracted, DR and the DRD
terms in giving the specular from the strips has already been considered. The RRD
and the DRR terms are present when the angle of the dihedral is less than 90°. Of
course, these two terms are most significant when the diffraction is along a reflection
shadow boundary RSB. Although the RDR term is present for all angles of the
dihedral, its significance is greatest when the angle of the dihedral is less than 90°
and the diffraction is along a reflection shadow boundary.

A discontinuity will result if a reflection falls off the edge for which a diffraction
must be included to balance the fields. Therefore, the DDR term compensates for
the discontinuity of the DRR and RDR terms. The RDD term compensates for
the discontinuity of the RRD and RDR terms. Also the DRD compensates for the
discontinuity of the RRD and DRR terms. Discontinuities of the DDR, DRD, and
RDD are balanced by the triply diffracted fields. Thus, one term may be balanced

by a number of different terms and vice versa depending on the geometry.

6 Results of Rectangular Dihedral

In this section, the theory and computer code are validated by comparing the UTD
results to the results based on a 2-D method of moments [18, 19] solution of the
rigorous integral equation for the currents induced on the target by the illumination.
Unless explicitly shown in the pattern, the geometry of the dihedral is as shown in
Figure 12. In order to calculate the backscatter results, a slight bistatic angle is
used to avoid numerical limit difficulties when approaching indeterminate forms

on the computer; alternatively, one could calculate the limits analytically using
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L’Hopital’s rule and calculate the fields without reqniring one to use slight histatic
angles. Method of Moments is chosen to validate the results as an independent
check, since both are two-dimensional. Fairly large sized dihedrals can be calculated
using Method of Moments in the 2-D case. In 3-D, limits on computer memory
restrict the size of dihedral that can be analyzed using Method of Moments. A 9 in
2-D dihedral is analyzed at 2 GHz and 10 GHz which means the dihedral is 1.52
and 7.62 wavelengths on a side, respectively. All the patterns are normalized to dB
below a meter, that is a two dimensional cross section.

For the vertically polarized incident field, the backscatter from a 90° dihedral,
Figure 30 shows the singly diffracted (D) term, DR, and RD terms. Figure 31 shows
the D, RD and DR terms combined, the DRD term, and the DD term. This is all
that is required to get the complete result for the 90° dihedral. Figure 32 shows the
result obtained by the D, DR, RD, DRD, and DD terms combined. Notice that the
result obtained by Figure 32 is the same as that obtained by all the terms of the
UTD computer code. (See Figure 45.)

For the backscatter case with strips of equal lengths, based on simple reflection
concepts, the order of interactions required to get the pattern in between the strips is
INT(—'%—'f). Where INT denotes the integral value of (1':—"’) Thus, for a = 60° third
order terms are required to get the pattern in between the strips. Figure 33 shows
how only the third order terms for a dihedral of 60° combine to give the correct result
in between the strips. Figure 34 compares the Method of Moments results with that
of the UTD computer code (with all terms present) for a dihedral of 60°. Notice that
the discontinuity at ¢ = 60° in Figure 33 and Figure 34 is due the triply diffracted
field which has not been included in the computer code. Our formulation indicates
that for a = 45°, fourth order interactions are required. Since the UTD computer
code does not take into account all the fourth order interactions, we expect no
agreement of the results in between the strips. This is shown in Figure 36. However,

even for this case, notice the excellent agreement for ¢ greater then 50°. Thus, for the




Figure 30: D, DR, and RD terms for the backscatter for 9 in 90° rectangular dihedral
at 10 GHz (vertically polarized).
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Figure 31: All terms of the above figure, DRD, and DD terms for the backscatter
for°9 in 90° rectangular dihedral at 10 GHz (vertically polarized).
S

¢ (deg)
Figure 3". All terms required to get the backscatter result for 9 in 90° rectangular
dihedral at 10 GHz (vertically polarized).
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terms present in the computer code, the pattern would worsen gracefully in hetween
the strips for a less then 60°. As the angle of the dihedral becomes smaller, more
terms are required to give the correct result in between the strips and a “cavity”
effect results.

From here on, the UTD results contain all of the terms discussed above. For the
backscatter case, from Geometrical Optics, a main beam is expected when the angle
of the dihedral is such that (g) is an integer. This is clearly evident in Figures

32, 35 and 36. Also, as the angle of the dihedral diverts from a, which makes (":"’)

an integer, the main beam falls. Figures 37 to 41 show backscatter results for a =
85, 92, 94, 95, and 120° with the incident field horizontally polarized. As expected,
the main beam of the pattern for a = 90° falls as a is decreased or increased.

The backscatter field for the 2 GHz case is shown in Figure 42 for horizontal
polarization and in Figure 43 for vertical polariiation. The 10 GHz backscatter
case is shown in Figures 44 and 45 for the horizontal and vertical polarizations,
respectively. Patterns for a fixed bistatic angle of 90° are shown nexf. The 2 GHz
case is shown in Figure 46 for horizontal polarization and in Figur@47 for vertical
polarization. The 10 GHz patterns are shown in Figures 48 and 49 for horizontal
and vertical polarizations, respectively. In all cases the agreement is excellent. The
small dihedrals have slightly more disagreement due to the fact that the higher
order interactions are more important. It is assumed that even better agreement
and/or smaller sized dihedrals could be achieved by including more interactions.
For engineering accuracy, however, this would not seem to be necessary in this

application.
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Figure 33: Only third order terms give continuous result for 9 in 60° rectangular
dihedral at 10 GHz for horizontally polarized field (backscatter).
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Figure 34: Backscatter field from a 9 in 60 rectangular dihedral at 10 GHz for

horizontally polarized field.
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Figure 35: Backscatter result for 9 in 60° rectangular dihedral at 10 GHz for hori-
zontally polarized field.
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Figure 36: Backscatter field from a 9 in 45° rectangular dihedral at 10 Gliz for
horizontally po'arized field.
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Figure 37: Backscatter result for 9 in 85° rectangular dihedral at 10 GHz for hori-
zontally polarized field.
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Figure 38: Backscatter result “or 9 in 92° rectangular dihedral at 10 GHz for hon-
zontally polarized field.
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Figure 39: Backscatter result for 9 in 94° rectangular dihedral at 10 GHz for hori-
zontally polarized field.
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Figure 40: Backscatter result for 9 in 95° rectangular dihedral at 10 GHz for hori
zontally polarized field.
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Figure 41: Backscatter result for 9 in 120° rectangular dihedral at 10 GHz for
horizontally polarized field. ' :
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Figure 42: Backscatter field from a 9 in rectangular dihedral at 2 GHz for horizontally
polarized field.
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Figure 43: Backscatter field from a 9 in rectangular dihedral at 2 GHz for vertically
polarized ﬁeld
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Figure 44: Backscatter field from a 9 in rectangular dihedral at 10 GHz for horizon-
tally polarized field.
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F iguré 45: Backscatter field from a 9 in rectangular dihedral at 10 GHz for vertically
polarized field.
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Figure 46: Ninety-degree bistatic field from a 9 in rectangular dihedral at 2 GHz for
horizontally polarized field.
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Figure 47: Ninety-degree bistatic field from a 9 in rectangular dihedral at 2 GHz for
vertically polarized field.
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Figure 48: Ninety-degree bistatic field from a 9 in rectangular dihedral at 10 GHz
for horizontally polarized field.
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Figure 49: Ninety-degree bistatic field from a 9 in rectangular dihedral at 10 GHz
for vertically polarized field.
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SECTION 4

Rim and Curved-Surface Caustic
Corrections

1 Introduction

The Geometrical Theory of Diffraction predicts infinite fields at ray caustics. The
occurrence of a caustic requires that the erroneous ray field infinities be “corrected”
with transition functions which blend the well behaved wide-angled ray field predic-
tions smoothly into the corrected or bounded values at the caustic. Details of rim
and curved-surface caustic corrections can be found in References [20, 21, 22]. Al-
though theses solutions are based on equivalent edge and line currents, the modern
MEC (Michaeli et al) provides essentially the same result.

Ryan and Peters [20] developed a solution in the rim-caustic regions based on
the field radiated by equivalent edge currents on the rim. This result goes to the
diffraction point solution outside the caustic region; thus, it is a uniform solution.
In Reference [21], this technique is extended by the use of the “stripping concept”
[23, 24] in addition to using a small argument approximation to the diffraction
coefficient in the specular caustic region of the radiation integral. This solution
referred to as the “Bessel-Struve function extension,” provides an accurate uniform
result in the rim-caustic region that is associated with a specular or forward-scatter

direction of disks, end caps of cylinders, cones etc.
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The need for the curved-surface specular correction arises from the fact that
the classical edge diflraction coefficient, being a local phenomenon, has no a priori
knowledge of the variation in curvature along a curved-surface away from the edge.
If the radius of curvature is equal at both the edges of the curved-surface, as in
the case of the cylinder, the total field along the specular direction will be correct..
However, if the radii of curvature are different at the two edges of the curved-surface
(for example, cones), the energy spreads differently at every point on the curved-
surface, depending on the radii of curvature. Since this information is not built
into the classic edge diffraction coefficient, the edge diffracted field is not able to
match into the reflected field in the specular direction whose dominant behavior is
as predicted by physical optics (PO). Using procedures similar to References |20, 21]
and extending them by asymptotically matching the PO solution for the reflection
from the curved face into the UTD solution, Ebihara [22] extracted a transition
function useful in the curved-surface specular region.

In Section 4.2, the equivalent-line current solution procedure [25] is presented.
In Section 3.1, the equivalent-edge-current solution of Ryan and Peters is presented.
Next, in Section 3.2, the Bessel-Struve function extension is examined. Finally, the

curved-surface specular correction will be considered in Section 4.

2 Equivalent-Line Current Solution Procedure

The following steps are used to find the equivalent-line solution:

1. The field of a canonical problem is obtained (a two-dimensional solution).

2. Next, the radiated fields from infinite travelling-wave line currents, I* and I"™,
are determined. I is an electric current and I'™ is a magnetic current.

3. The currents I and I™ are substituted for the two-dimensional solution,
and the currents /* and /" are then adjusted to give tiie same field as the two-

dimensional solution. In the principal plane, I' gives the horizontally polarized
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field, and I’ gives the vertically polarized ficld. These are “fictitions” currents that
vary with the incident and observation positions.
4. These equivalent line currents are broken up into infinitesimal current ele-
ments. The current elements are placed at the equivalent locations on the surface.
5. The radiated fields due to the above currents are evaluated. This involves
a line integral. The resulting expression is the equivalent-line current solution. It

gives the correct value of the field away from the caustic direction.

3 Rim Caustic Correction
3.1 Ryan/Peters Equivalent-Edge-Current Solution

Ebihara {22 used the original work by Ryan and Peters [20] to get the standard
diffraction coefficient with rim caustic correction function, Figure 50. There appear
to be some sign discrepaﬁcies early in the derivation in [22] which result in incon-
sistencies in the final result for the hard polarization using Equation 5.225 in [22].
In this section, the standard diffraction coefficient with the transition functions are
defined for consistency.

The equivalent edge current used by Ryan and Peters are

26

‘= — (¢ E JkF !
" nksin B,sin ! (e E (0)) € (126)
and
m __ 2ij - 7 ke’
L= k sin 3, sin ﬁ,',n (C'H (0)) € ’ (127)
where
TN R
G'(¢,9') = -~ (4 - B), (128)
1
G”(¢,¥) = - (A+B) (129)
2n
and
’ 7I'+((I)-_(I,/)) . ‘(¢_¢I)
. = — 7 M S 4 \
4((}’@ ) cot ( o + cot ( ™ , (130/
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Figure 50: Geometry for rim caustic correction.




B(®,%') = cot (W—L(g;—"(b—’)) + cot (E_—(;—I—);’—q)—lz> (131)

These currents are distributed on the illuminated edge of the rim. The radiated

fields due to the electric and magnetic equivalent edge currents on a circular rim are

Ey = “2‘:9 e_:h /U " Sifp : (6- B (0)) sin (¢ — ¢.) 7+, (132)
Er = -;;':- e—:kr [ o sﬁ - (e« H (0) cos (¢ — ¢.) e+ Vdg,, (133)
Ee = :o; [ Gﬂ (- £ (0)) cos (¢ - ¢.) ™+ dg,,  (134)
and
Er = —“g?se e_:kr /” 2” si’: ﬂ (6- H' (0)) sin (¢ — ¢.) X7+ )dg,.  (135)

The diffracted field is the sum of the fields radiated from both electric and magnetic

equivalent currents, so that

El,, =0E;+ ¢E,, (136)
where
E,=FE,+ E} (137)
and
E, = E; + EJ. (138)

To simplify the integration in (132)-(135), Ryan and Peters used the approxima-
tion that the diffraction coefficients remained relatively constant with respect to the

variable of integration, so that

Gl.n: ) .
inh S constant in ¢,. (139)
Let
Y. - kan, ((ﬂ, ) (7: { r') (140)
= kalsin@ cos(¢ &) +smfeos(d - ¢.) (141)
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and

Y = kz,.i . (1‘; + 7"1).

Using the previously mentioned approximation and the fact that

2n .
/ sin @, cos p.e’Vdp, = 0,
0

the expressions for the radiated fields hecome

a eJ"l e_Jkr

~—E {G" /2” cos® ¢, e’V dg,
¢ " ) ‘

¢ ﬂsinﬂ,, r

. 2% .,
—G™ cos @ cos 0'/ sin? gpe’t d¢.,} y
(

)

and

a e e it

= ——
2rsinf, r

. 2r i .
Ed@mﬂmwj sin? £.c 7" Jd,
1]
2r )
-G™ / cos’ e "d;.‘.} ,
0

where

1/),. = U cos ¢,..

Let the following integrals be defined by:

2n
F(U) = jf cos? ¢, e dg,

0

r
?2

fi1(U) = /' cos? poe’*" d,

E

iR

i) = [ cos dede,

~l

27
Fy(U) = cos b cos 9'/ sin’ ¢, /' d,

f2(U) = cosBcos 0'/;” sin? ¢, e’ do,

f; (U) = cosfcos 9'/:)— sin’ ¢, ¢’ dg, .
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(145)

(146)

(147)

(148)

(149)
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These integrals can he evaluated in closed form as follows:

R == |(a@) - 280 45 (- 2] s

@ == |(w@-22) -5 (me@) - 2E)] s

J2(U) = wcosfcos ¢ (Jll(]U) + jH'lﬁU)) (55)
f3(U) = mcosbcos § (J'((jU) —J'H|I§U)) ) (156)

where J, and H, are the first order Bessel and Hankel functions, respectively. The

expressions for the radiated fields are

E a e.j'Tr e—jln' ; 1 B

é—i;l_’sinﬂ,, r E¢§;{—(A—B)F,+(A+ ) F»} (157)
a ej'? —]Ki 1

Ep = E'__{ (A~ B)F, + (s + B)F\}. (158)

2rsinB, r

The above can be rearranged into

Eo= 2 e L A(F — Fy)- B(F + F 159

®~ 2rsinf, r "{ (Fy 2) - B(Fy + F3)} (159)
a e e——jh

EI) = {A(F| Fz) + B(FI + FI)}- (160)

27 sin ﬂn r ”2

Breaking the integral apart into
FU)= fi(U)+ f7(U) (161)

F(U) = £2(U) + f; (U) (162)

and further manipulating them gives

— Al —gkr
B = E‘fs:ﬂ%E‘”% {A(fi - f2) - B(fi + f)
+A(f] - ) - B(fi + [3)} (163)
a ej‘?r e-]kv- : 1
By = s 5 Pogy (AU - S+ B+ )
VAL )+ B(S ) (164)
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Now, consider associating a half-rim integral with the points at ¢ = 0, =, the
stationary points for a large 9,; they are also the diffraction points on the rim for
the principal plane. From the above equations, the field contributions from the half

rim associated with ¢, = 0 are

—a el e~ikr )
1= Sy sng. T E {A(fi — f2) - B(fi + f2)} (165)
Jve p—Jkr
Bu= o B (AU = £2) + B+ fo)} (166)
E! = $E\ 4+ 0E,q. (167)

Comparing this with the expression for the edge-diffracted field from a point on the

. . ’ejkr
= BQVA(@QIH (168)

the new diffraction coefficients may be expressed as:

rim,

D(Q.) = ~-A'BD.(Q.) - ¥'¥Dx(Q.), (169)
where :
2n\/2Tksm - (AT.(U) — BT.,(U)) (170)
where
1 1rU iU~
T.(U) = L (5/(V) - £0) | e (172)
Ta(U) = - (A(U) + £u(0) 5 e 3 - (173)
and
UQ.) = kan, -(r +7). (174)

The functions T, and T., are the transition functions through the rim caustic region

based on the Ryan/Peters equivalent-edge-current solution. The transition functions
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have small and large argnment forms which are obtained using the series and the

asymptotic forms of the Bessel and Struve functions, so that for

U] << 1
T (U) ~ \/i;_5e~j(u-%)
{; [1 _ 3’%3 + % — cos § cos 8/ (1 - %2-)]
+]~23—g 2(1—21—1152) — cos§cos 8’ (1— %)]} (175)
m'(U) ~ @e-j(rf—§)
{% [1 - glsj—z + % + cos Bcos 6/ (1 - %—2)]
+j%g 2 (1 - %]5—2) + cos § cos ¢’ (1 - -[1]—;)]} (176)
Ul >>1
T.,(U) ~ _19 39 7145

~8u Y 12807 T 102407

G 3 415
~ cosfcosd (“ﬁ teuz 128U:')

—wfge”(“"‘:) [cosﬂcos g (l + ?]1—2-) + i/2—2] (177)

j9 39 745
Tr' ~ ) - .
2(U)~1 =355+ Tos07 ~ 102407
, J 3 715
+C0$0C050( U+-8-m—1—2?(7—l)

+\/1r—2—qe‘f(""’7) [cosOcos ¢ (1 + —l%) - 523] . (178)

Associating a half rim to the stationary points @, and Q3, the total field radiated

by the equivalent edge currents on the rim may be written in the diffraction-point
form
E’d

rn

E! 4 EY, (179)
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where
—gkr

El=F -LD-(Qt)\/P"(Ql C ":f_,.—' (180)

and
e-—jkr

E] = E' - D(Q:)\/p(Q2)e™™ (181)

T
3.2 Bessel-Struve Function Extension

One problem associated with the Ryan/Peters result is that the approximation (139)
becomes invalid for a rim caustic associated with an end cap’s specular or forward-
scatter direction. To overcome this difficulty, a modified edge vector é* is used. It

is defined by
&= p(ep), (182)

where
(" +7) x #a,

7+ 7) x ) (183)

p=
i, = normal to the end cap
7 = direction of source, and
7 = direction of receiver.
By using the modified edge vector, only the perpendicular components to the
plane of incidence of the equivalent edge currents are considered. This is called the

“stripping concept.” The equivalent edge currents with this modification are given

by

(d 2].GP nn — k¥, !

L= cempong (¢ E0)e (184)
Vo= 256" 5. H ke F!

I = ksin 3, sin ﬂ",n (e H (0)) € : (185)

The modified equivalent-edge-current solution is obtained in the same way as before.
To simplify the evaluation of the integral, the following small argument approxima-
tions are used:

0 =~6 — ¢, inthe specular region, or 186
P




@~x—0 —¢c, inthe forward scatter region.

This results in
G(',m N 1

sin B, sin 3/, ~ €cos ¢,

and the integral
2% .
F,(U) = / cos e’ P dg,,

0

which can be evaluated by using

1o(U) = [ cosg.et'*dgy

2

:w[%—-HmU)+jJKUﬂ-

(187)

(188)

(189)

(190)

Associating a half rim to the stationary points @, and @3, the total field radiated

by the equivalent edge currents on the rim may be written in the diffraction-point

form
El, =E!+Ej
where
o — ek
Ef = E'D(Q)Vpi(Q)e™" " —
—gkr

Ef = E’i-rD_(Qz)\/P"(Qz)eij”'ET’-

The modified diffraction coefficient is

D(Q.) = -BBD(Q.) - ¥'$Di(Q.)

—e—i®/1 T+ 0 . __ﬂ—\
= ——— cot t
Dus %Jhkco( 2n )+m( %t)

qt{cot (" ;n’m) + cot (" ;n[#)}] T.(U),

ﬂ = ﬂi = ¢:t¢’1

where

U = kah, - (7 +#),
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(194)

(195)
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T.(U) = 1 £, (U) 2 e D) (198)
and
£ (U) == E — H, (U + jJ, (U)] . (199)

J, and H, are the first order Bessel and Struve functions, respectively. The transition
function is T, (U), k is the wave number, a and 7. are the radius of curvature and
the normal to the edge at the point of diffraction, and 7 and #' are the directions
to the source and the receiver, respectively. The transition function has small and

large argument forms given as:

for U] << 1
wo [T i) fr 202 () U LU U
T.(U) ~ e -3 - ) tig -3 (200)
for U| >> 1
- JE _ l _2__ ——j(l’-—%) 15 _ ]105
TU)~1+35 ~o\70° * 13802 T 10240 (201)

4 Curved-Surface Specular Region Correction

Details of the curved-surface specular region correction are presented in [22|. Re-
ferring to Figure 51, the term of the diffraction coefficient which “blows” up in the
specular direction is corrected by the inclusion of a transition function. This result
goes to the diffraction point solution outside the caustic region, making it a uniform

solution. The specular terms from the two diffraction points with the correction are

given as
_e"Jvr/.l _— (¢‘ + ¢I‘)) )
rn— _ R. \ t{ — % T'( + X - 202
~h - 2n+/2nk sin 8, i ( 2n (+iXa) (202)
and

=i/ B . {’
Dyt = Runz—rs cot (1 (2 + 4))

————— T.(-1Xa,). 203
2n2nk sin B, 2n ) (-3Xa) (23)
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Figure 51: Geometry for curved-surface caustic correction.
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The radius of curvature of the diffracting edge is a,, and

X =Kcota, [ta.n2 a, (cos2 v + € sin? v) + l] 1 sin 3,

2cos (¢ ; ¢,) cos (?—Zz—ﬂ) , (204)

where the ¢’s are measured from the curved surface, as shown in Figure 51 and ¢,

is the ellipticity of the curved surface. The transition function is given as

2
T(z)=T\(z) = §zM(1,2.5, —z) (205)
or
T(z) = To(z) = —2U(1,2.5,-2), (206)
where
U(1,2.5,-2) = —251(1,2.5,—2)—{-—\—4—;(—2 ~fe77, (207)

and M and U are confluent hypergeometric functions. The small and the large

argument of the transition function are the following:

for |z} << 1,
.2z 22 2
_ VT 2z 222 2P
(2) & e 2y, 20
Tyz) ~ e (2 —+g 4 (209)
for |z| >> 1,
\/7_" ijg e_z 1 1
~l4 YT ehide® 2 2
T](Z) 1+ 2 e ? \/; 22 152 ( 10)
1 1
To(z) ~1— — - —. 211
2(2) ~ 1 2z 427 (211)

The new diffraction coefficient can be expressed as:

D' (Q.) = ~BBD¥(Q.) - ¥4DF(Q.), (212)
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e [ (rA@-)y (R
DIy = 2n\/_2ﬁcsinﬁ,, { ' ( 2n ) i t( 2n ) +
R.» [cot (11(—414'—)) + cot (1—“—(‘1’—”—’3) T(:tha,.)]} (213)

2n 2n

R., = TL (214)
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SECTION 5

Top-Hat

1 Introduction

The study of scattering from the top-hat has been of interest for a long time. Among
some of the latest work is [26]. Which uses physical optics to get an approximate
backscatter result. In order to get a more accurate UTD result, the 2-D dihedral
discussed in Section 3 can be extended to get 3-D results for a wide variely of prob-
lems. The solution of the triangular dihedral in the principal plane is discussed in
[13] is the starting point. A few modifications are required to the UTD 2-D analysis
of the dihedral in order tc obtain the solution to the top-hat. The high frequency
solution is validated against a moment method body of revolution result [27]. For a
90° dihedral, as seen in Section 2, the number of important terms decreases signifi-
cantly for the backscatter case. It is shown that a complete solution can be obtained
by including the D, DR and RD, DD, and DRD terms.

For the top-hat, a UTD result is obtained from the important terms which is
valid in all regions for backscatter and is reasonably simple to program. Also, in
the dihedral region, the dominant result is further simplified to provide approximate

results. The parameters for the top-hat are shown in Figure 52.
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Figure 52: Top-hat geometry.
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2 Double Diffraction Simplified to Retain the
Significant Part

In order to obtain a result which is valid in all regions and is simple to program, it is
necessary to extract the dominant part of the donble diffraction for the backscatter
case when the two diffractions are occurring from the same point. This is only
possible in terms such as DRD.

The double diffraction formulation for the joint wedge, discussed in Section 6, is
used to get the dominant part of the the double diffraction coefficient. In this case,
ny =ny,=mn,4a, =a,=a, ¥, = &, = &, and d are the same as defined in Section
6 for the joint wedge. In order to get the dominant contribution, it is necessary
to choose & = 7 — (nw — ¢), where the angle, ¢, is measured from the ‘o’ face, as
shown in Figure 9. Also, the distance parameter, d, is the distance traced by the
ray between the first und the second diffraction points. For this case, the double

diffraction coeflicients, P, and F},, Equations (45) and {(46), can be simplified to

1 a’

(QHQ )_ P (Q n d) 87|']Tl sm'( )

d[( 2kd)F{kda] ](ex;;)’ (215)

for a TM plane wave (with the electric field parallel to the wedge), and for a TE

plane wave (with the electric field perpendicular to the wedge),

P (Q1,@1) = Fu(®,n,d) = - — cot (E)

47yn? 2n

da [(J - 273@) Flkda] - j] (e\/;) . (216)

For the top-hat, these equations are used to get the dominant contribution from

D|RD|, D:;RD;; a.nd D;RD_; terms.
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3 DModifications Required

Basically, rim caustic correction and spread factors are required to modify the 2-D
dihedral solution to obtain the solution for the top-hat. In Section 3, it is shown that,
for the backscatter case, the most dominant terms for the 90° dihedral are diffrac-
tion, diffracted-reflected (DR), reflected-diffracted (RD), and diffracted-reflected-
diffracted (DRD). The dominant contribution from these terms are used to get the
result for the top-hat.

3.1 D, RD, DR and DRD terms

For the backscatter case, referring to Figure 52, using Equation {25), the diffracted

terms from the disk is given by

v =0, =0 1 - Rt 7, (2kbsin (8))
) = ~ - et . Id S
disk a.h 20/ k N/ sin (0) 1n
b ) .
J2k(b—a)sin{d) 9217
V 2sin (0)8 ? (217)
and
U’)7 i _e~)7r/l 1+R 1 T( 2kb . (0))
ok = = sh—=——= | T.(— n
disk a.h Zm 2.h sin (0) : Sl
- b ej;—e]?k(b—n)sin(ﬂ)e~jIkbsin(());
2sin (6)
0<6<tan™' [&2],
o [f5e] (218)
7 <f<m,

where R, = F1 and

(219)

U E, E field perpendicular to the pattern plane
sh =
H, H field perpendicular to the pattern plane.

Using Equation (13), the diffracted terms from the cylindrical surface are

A 2¢ -1/ sin (?:_;!)

1
vl nh 3V2rk cos (5'1') -1 *
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R, ! #] T. (2kasin (6))

cos (3;—') — cos (Q"j '9)
/—— a ejZkh(nS(())_

v 2sin (6) ’

m 1 h
- 22
0<2+tan [b—-a]’ ( 0)
and
- 2e I/ gip (2 1
Ur,,l;; = U: h ( : ) p ot
o 3Vark cos (%) - 1
1
R,» =~ T.(—2kasin (8
" (_11) . (_‘(,,;,,l)] { (6))
a j3 _12khcos(8) -7 tkasin(8),
25n(0)° ° © ’
o<e<g. (221)

The diffracted-reflected terms, obtained by simplifying Equations (79) and (80)

and modifying for curvature and the caustic correction are given as

LA
Ui gk — gt £ T (2kasin (8
a‘hm ( ( ))

4sin (%) i [ a
{R"h3 [cos (:!l") ~ cos (br_:ﬂ)‘] ok (0)} 2sin ()’

0<6<tan"' {b;“}, (222)
and
R 4 gk g —e i/
*h 90Vark
1 . a
{2R"hz;)—s—(—éj - ]4k (b — a) cOs (9)} —2—;;-(-0—),
tan”~' [b;a] <8< 7—,; (223)

For the DRD terms, as discussed in Section 2, only the dominant part is retained.

The dominant part of DRD, where the diffractions are from the disk, is

T

Ul’, 1, = R.-.IIU.:,hPyh (¢ =6 - 5»"‘ = 2,(1 = 2(b - a’))
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4 o j2k(b—a)sin(0
J(m+®~ﬂ)(ﬂ+®*@)me( )(h (229
where
b

pr = q—l—n—(g—)—:T’ (225)

L (- +pa
T a+2((b—a)+p) (226)
b((b - a) + ') o21)

P2 = b in(8) - 1[(6—a) + o)
and P, (®,n,d) is given by Equations (215) and (216). The dominant part of DRD

terms, where the diffractions are from the cylindrical surface, are

UMRDs = R, WU, Poyy (@ = 8,n = 2,d = 2h) T, (2kasin (6))

o a? ej'lkh cos(0),
2(a + hsin(6))sin(6) '
T a1k
0<f< 5 tan [————b — > (228)

and

UPI < RoUL Py (%= 5 4+ 6,n = 2,d = 24) . (~2kasin (6))

.a2 . ¢33 gitkh cos() 3aka sin(0).
2(a + hsin(6))sin(8)

0<f< —g (229)

4 Dominant Result in the Double Bounce Re-
gion

It is shown in Section 2 that the diffracted-reflected type terms, RD and DR, may
be combined to give a dominant result in the donble bounce region for the dihedral.
For the top-hat, a result in the double bounce region can be obtained by modifying

Equations (79) and (80),to take into account the curvature, so that

. . fz in (8 b—
Ur:v’)z::l:i‘l” = (j,:.hejT _a:i‘_;_l—(__)h! 0,.,,, << tan-‘ [ h a] ? (230)
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and

b—a
h

- 2
UPDRERDy % a (b - a) cos(f); tan™' {

3
; 0 < — 8. (231
dominant s.h Y sin(G) ] < < 2 t ( )

In Equations (230) and (231), 6., is an angle that is chosen such that the specular
from the disk and the top of the cylindrical rim are not significant. This is necessary
since these equations do not consider singly diffracted fields. A reasonable choice for

6.1 is approximately 10°.

5 PO on the Axis of the Top-Hat

Along the axis of the top-hat, the cotangent terms of the diffraction coefficients that
tend to “blow” up and combine to give the dominant result. Not surprisingly, the
dominant result obtained is exactly as one would predict from physical optics [20].
As expected, at the z-axis, the reflection boundary cotangent terms associated
with the diffraction from the disk (Equations (217) and (218)), give the area of the
disk. The reflection boundary cotangent terms associated with the diffraction from
the upper face of the cylinder (Equations (220) and (221)), give the area of the end
cap. The incident boundary terms from D4R, RD;y and DyRD; (Equations (222),
(228) and (229)), give the negative area of the end cap. Thus the apparent “infinites”
combine to give a result which equals the area of the disk minus the area of the end
cap of the cylinder plus the area of the end cap of the cylinder with the phase taking
into account twice the electrical distance of the cylinder. The RCS along the axis of
the top-hat is appropriately given as
2

po

2 2 2
7(b* — a’) 4 T2 -k
fop.hat €

A A

N=u° - 47r

(232)

6 Results

Figures 53 and 54 compare the results obtained for the 66 and ¢¢ polarizations by
the UTD computer code and the Body of Revolution code at 10 GHz for a top-hat
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Figure 53: Backscatter field with 86 polarized field. The solid line is UTD solution
and the dashed line is the BOR solution.
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Figure 54: Backscatter field with ¢¢ polarized field. The solid line is UTD solution
and the dashed line is the BOR solution.

90




of cylinder of dimensions a= 2 in, b= 4 in, and h= 4 in. The results compare well

with the body of revolution code.

7 Bruderhedral

A bruderhedral is a reflector that is an angular sector of a top-hat. (See Figure 55.)
Fundamentally, the solution to the bruderhedral is the same as that of the top-hat,
discussed above. In the region, 0 < 8 < 90°, the scattered fields are determined
from Equations (217), (220), (222), (223), (224) and (228) with T, (U) replaced by
Tyartiat (U) which is defined as:

Tpartiat (U) = -}(U) lzqe—j(u_ﬂ/_‘:’::; cos goeV St dg (233)

where —@pound < @ < Pround is the angle made by the sector of the bruderhedral.

8 Results

Figures 56 and 57 compare the results obtained for the 88 and ¢¢ polarizations
by the UTD computer code and the measurements at 10 GHz for a bruderhedral of
dimensions a= 107 cm, b= 115.9 cm, c= 30.5 cm and h= 8.9 cm. The measurements
are courtesy of D. Blejer of MIT, Lincoln Laboratory. The lip of the model used in
the actual measurements is believed to have edges parallel to the y-axis, as shown in
Figure 55. The UTD results have edges along constant radial lines. The differences
are expected to be minimal since @ is much larger than the difference between b and

a. The results compare well with the measurements.
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Figure 55: Bruderhedral geometry.
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Figure 56: Backscatter field with 68 polarized field. The solid line is UTD solution
and the dashed line is the measurement.
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Figure 57: Backscatter field with ¢¢ polarized field. The solid line is UTD solution

and the dashed line is the measurement.
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SECTION 6
Bi-Cone

1 Introduction

The methods used to analyze the top-hat in the previous section are very similar
to those required to obtain the scattered fields in the far-zone from the bi-cone. In
general, all the terms discussed for the UTD 2-D solution of the dihedral in Section 3
have to be modified to take into account curvature and specular caustics. However,
by putting a restriction on the bi-cone that the sum of the cone angles, a,, and
a,2 in Figure 58, is a right angle, for the backscatter case, the number of important
terms decreases sighiﬁcantly as seen in Section 6. For this case, a dominant UTD
result is obtained which is valid in all regions and is simple to program. Also, in the
dihedral region, the dominant result is further simplified by using only the double
bounce terms to provide approximate results. Figure 58 shows the parameters for

the bi-cone.

2 Modifications Required

Basically, it is only necessary to change the caustic corrections and spread factors
in the 2-D dihedral solution to obtain a result for the bi-cone. Two types of caustic

corrections are needed. One is the rim caustic which is discussed in Section 3 and
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Figure 58: Bi-Cone geometry.
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used in the solution of the top-hat in Section 5, and the other is the curved-surface

specular region correction whicl is examined in Section 4.

3 Dominant Result

The bi-cenc has the same type of dominant mechanisms as the 2-D dihedral. In order
to simplify the problem, it is necessary to choose cone angles such that a., + a,;, =
90°. Thus, as for the 2-D dihedral discussed in Section 6, the dominant result is
obtained from diffracted (D), RD, RD and DRD terms for the bi-cone.

3.1 D, RD, DR and DRD terms

The expressions shown below are for backscatter from a bi-cone of parameters given

in Figure 58. Also note that

a,, =sin”' [b* aJ , (234)

L
a,; = sin”" [C—T—“] , (235)
l,
3 a,
A Nsull 236
n, 2 + r ’ ( )
and
3 (e 7]
g = — ) 2
ny 2 + x ( 37)

Using Equations (25) and (26), the diffracted fields from the upper rim of the

bi-cone of radius c is given by

, 0
U”' = U’h' \/____ 2C0t + R, {— cot (n—z)

l
+ cot (" + 9) T, (—jkc ( ) 2 cos (2a,2 — 20))}} T, (2kcsin 6)
ny c—a
€ 12kl cos(f-a ) 23
Viosng® o (238)

96




and
P e 7’3 sin (nl) [ 1
v =Ue 712\/21l’k2 | cos (nl7) — ljL
I ' .
R, . o (_:_7) o (1'_;&) T. (—2kcsin 6)

¢ e]—} ej?frl; cos(f—rreg )e—] thesind,
. b}
V 25sin 6

T
0 < =. 23
<3 (239)

The diffracted field from the lower rim of the bi-cone of radius b is given by

y I

_~e—‘) 1

60—
U.m:(j: _— |2 t(—l—)—i-R., { t( )
"h2n,v27rk[ € 2n, S n
2r — 0 s l| .
+ cot - T- | —jkb 2 2 cos (2 + 26) T. (2kbsin 6)
\ _

[ ; .
2s;n ee—)lkh L('S(0+'lﬁl), (240)

and

oL .
e’ sin (l) 1
"y

v’ =ui, +
M a2k | cos (’—,"T) -1
] .
Rn.’l ; 7: "‘Zkbsin 0
cos ("l') — cos (%“—") ( )
b . . L
Z =32kl cos(04ny) —31kbsind,
2sin 6 ere € ’
T .
8> —. 241
2 (241)

The purpose of the curved surface specular caustic correction for the DR and
DRD terms is twofold: to ensure continuity of the fields, and to obtain the physical
optics result for the visible part of the cone in the specular direction. This requires
that for the diffraction-reflection type terms, the caustic correction is associated
with the incident shadow boundary. After simplifying Equations (70) and (71) and

modifying for cnrvature and caustic, the diffraction-reflection terms are given as

. —e i T -0+ a,
g g g e R. ¢ ______,_)
a2k [ n
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60— (¢ V) . ll
+ cot ( o ) T. (Jka (b— a) 2cos (2a. + 23))}

1 pc“

™ . . P2
() om0 - ] | BBZ
+co (nz) J2n,kl, sin ( ) 5 +a0)

l
Ay < ) < Q.92 + tan"' [il] y (242)
2
and

2] -6 - a,
UM 4 gt g ¢ [R_.,l. {cot (_________" a")
2k 1

ny n

+ cot (0 + a,<|) T. (jka (_l_,_) 2cos (202 — 29))}
ny cC—a

r2 42
+ cot (;l"-) ~ j2n.kl, sin (0 + a,,.)] \J}L’L.
i

Py’ + 82)

a.; + tan™! [j—l] <fl<mT—0,. (243)
2

In the above equation for D, R and RD, terms

er

rt _ Bt
P2 = Son (8 +an)’ (244)
R.rl = a- lz cot (0 + an ) Siﬂ Qe , (245)
cos a,.
dr _ c(s+ p;|)
Ty (s1 + p5') (sin 8 + sin (6 - 2a,,)) (246)
and
L
SYCEY D) 47
sin (0 + acl) (2 )
and for Dy;R and RD; terms
R,
r2 _ __ fte2
P2 = im0+ ag)’ (248)
R,=2 + 1 cot (6 — a.y) sin ., ’ (249)
cos a,;
P b(s + p3) 50

b+ (82 + p5) (sin 6 + sin (6 + 2a,,))

98




and
L

sin{8 ~ a,,)

(251)

322

For the DRD terms, as discussed in Section 2, only the dominant part is retained
for the joined wedges solution. The dominant part of the DRD term in the region

where z is positive (especially around 8 = a.;) is

IJDIR”l = Rn.hU:.h})a.h (Q =8~ Q,2,N = ‘nz,d = 212)

T. (jka ( d ) 2cos (26 + 2a,.|))
b—a

p(“ pr’ 42 12kl cos(B—nq) (252)
Y AVIETY L ,

and in the region where z is negative (especially around 8 = = — a,,)

(]”""”)"l = R"’,U:.hl)_,.h (‘I’ = 9 - (7f - a(:l)yn = nl')d = 211)

T. (jka ( b ) 2cos (2a,p — 26))
c—-a

P p? 41— 32kl cos(04a,)
| : 1t te) . 253
J(pd_; + l') (pr'2 + ll ) p € ( )

In Equation (252)

d1 c
_ 254
p sinf —sina,,’ (254)
o (¢ +1)a (255)
a+ (p" +18)2cos a,’
rl
d2 (P + 12)6
= 2
c+ (p"! + 1) (sin 6 — s5in ap)’ (256)
and in Equation (253)
, b
3 — s 2 7
sin § — sin a,, (257)
a3
7= (" +1)e (258)
a4+ (p®+1)2cos o,y
and '
S — CAREDL (259)

- ;_-.k(p"*’ + l.)(;;in 6 -sina,)
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4 Dominant Result in the Double Bounce Re-
gion

It is shown in Section 2 that the diffracted-reflected type terms, RD and DR, may
be combined to give a dominant result in the double bounce region for the dihedral.
Modifying Equations (79) and (80), to take into account the curvature, a result in

the dihedral region for the bi-cone can be given as

.. 2 AT
URZ,-H’).R — : 'eJ—‘___l 2 sin 9 —_— a"_, .
dominant <.} \/X (P;' +3|) ( 2)’
l
gz + 0.y <0 < o+ tan™! [l—'] , (260)
2
and
) 2 p'r2pd2
Udominant* = Us €3 == | =3-—— sin (0 + au1);
d ' L (P32 + 82) ( 1)
l
a.s + ta-n_| [l—|] <l<w-— Ay — 0rnl- (261)
2

Using Equations (244) to (247) in Equation (260), and using Equations (248) to (251)
in Equation (261), the dominant contribution from the double bounce is obtained.
An angle, 8,.,, is chosen so that the specular from the curved sides of the cones
‘are not significant. This is necessary since these equations do not consider singly

diffracted fields. A reasonable choice for 8.,/ is approximately 10°.

5 Results

Figures 59 and 60 show the results obtained for the 60 and ¢¢ polarizations by the
UTD computer code and the moment method body of revolution code [27] at 10 GHz
for bi-cone of a = 0.5in (0.42 A),b=c = 2.01in (1.69 A),and [, = [, = 1.5v/2 in
(1.8 A). Considering the small size of the bi-cone, the results compare well with the

body of revolution moment method code.
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Figure 59: Backscatter field with 60 polarized field. The solid line is UTD solution
and the dashed line is the BOR solution.
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Figure 60: Backscatter field with ¢¢ polarized field. The solid line is UTD solution
and the dashed line is the BOR solution.

101




SECTION 7

Parallel Plate Cavity and Circular
Cavity

1 Introduction

The study of scattering from a parallel plate cavity and its three-dimensional coun-
terpart, a circular cavity, has been of much interest lately (28, 29]. These shapes
may be used to model many common objects. For example, the parallel plate cavity
can be used to represent the dominant scattering from a truck bed and the shallow
circular cylinder cavity resembling a cake pan can be used to represent the dominant
scattering from a wheel hub, cannon barrels, jet inlet structure, et cetera. Thc the-
ory and the results discussed in this section are valid for cavities of arbitrary depths.
However, since the terms in the non principal plane are not included, the smaller
the height to width ratio of the cavity, the wider the range of angles over which
the result is valid. Also, the dominant terms of a shallow cavity are the same over
much of the region (the smaller the height to width ratio of the cavity, the larger is
the region) as for a dihedral, which has been studied in detail in Section 3. In this

section, three dots, “.-.”, will represent one or more reflections within the cavity.

2 Dominant Terms for the Parallel Plate Cavity.

Consider the two-dimensional geometry shown in Figure 61. For the backscatter
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Figure 61: Two-dimensional parallel plate cavity geometry.
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case, looking along the z-axis (§ = 0”), the important terms are the diffractions
(D, and D,), diffracted-reflected (D, R, and R,D;) and the diffracted- reflected-
diffracted (D, R,D, and D,R,D,) terms. See Figure 62. R, refers to the reflection
from the base of the cavity. From the study of the basic dihedral mechanisms in
Section 2, it is expected that as 6 departs from 0°, the diffracted-reflected (D\R,
and R,D,) terms will dominate the solution. However, the angular range over which
the diffracted-reflected terms dominate, will depend on the ratio of the height to the
width of the cavity. The shallower and wider the cavity the larger is the angular
range.

As 8 increases, one set of terms get shadowed and another set of higher order
terms appear. For example, once the DR and RD terms get shadowed the DRR and
RRD terms appear, upon shadowing of DRR and RRD terms, DRRR and RRRD
terms appear, et cetera. From a geometrical point of view, the DyR---and --- RD,

terms are visible in the region (- -- represent reflections)
d 2 1)d
tan™' [—n%—] <8 < tan™' [gl;—’;——-L] , (262)

where m is the number of reflections before reflecting from the base of cavity.
For example, m=0 represents D, R,, m=1 represents D, RR,R, m=2 represents

D \RRR,RR and so on. R, refers to the reflection from the base. (See Figure 62.)

Also, the D,R .- and --- RD, terms are visible in the region
2 d
tan™' [(—ln%”—] < 8 < tan™' [@’;}-)—d] , (263)

where m is the number of reflections before reflecting from the base of cavity.
For example, m=0 represents D, R, R, m=1 represents Dy RR,RR, m=2 represents
D,RRR,RRR and so on. Again, R), refers to the reflection from the base (see Fig-
ure 62). Given the angle 8, the value of m (number of reflections before reflecting
from the base of the cavity) may be determined using Equations (262) and (263).
Rearranging Equation (262),

_2_!1_t_an 6-d htan6

<m<

2d d

(264)
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Figure 62: Some of the terms of the cavity problem.
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and il the range of m includes an integer, then for the given angle, 8, the N, - -- term
is present. Thus, the diffraction occurs from the upper left edge of the parallel plate
cavity, and the integral value of m is the number of reflections before reflecting from

the base of the cavity. Rearranging Equation (263),
htand —d 2htanf —d

<m<

y —g (265)
and if the range of m includes an integer, then for the given angle, 8, the D, - - - term
is present. thus, the diffraction occurs from the upper right edge of the parallel
plate cavity, and the integral value of m is the number of reflections before reflecting
from the base of the cavily. Note, in general, for a particular 8 either Equation

(264) or (265) will have an integral value in its range. If both the equations have an

integral value in the range, then there is a shadow boundary at that angle.

2.

foud

D{---and ---D; Terms

Consider the case of diffraction from the top left edge (D, ) shown in Figure 63. The
field from D, --. for a bistatic angle of ¢, where € is a small number, valid in the

region defined by Equation (262), is given as

-j= - ! s =
U“n R _46 24 kR:(v.zI:"+2) cot (1__.(_?;_4-;(_’_)) eJk(r,-r +r,~-r), (266)
Vam

where m is the number of reflections before reflecting from the base of the parallel

plate cavity, and

7 =sinf & + cos 6z, (267)
7 =sin(f —¢€) £+ cos(d —¢)3z, (268)
fi=—-az+hz (269)

is the position vector of the diffraction point (D,),

fi=—(4dm+2)az—-hz (270)
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Figure 63: D, --- type terms.
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is the position vector of the diffraction point (D) imaged through all reflection,
®=(0-¢), (271)

and

 =x-9. (272)

Using Equations (267) to (272) in Equation (266),

-iT n . L _ .
Ul).-.. ~ € (_) e—Jlr(|m+2)nsmﬂeﬂn[(lm-{-I)ams(l-h sm()]. (273)
V2rk \€

The field from - - D, valid in the region defined by Equation (262), is given as

..j-’l - Y e o= ok
U~ -————-—4e 2‘kR,(.§:n+2) cot (Zr___(il;ib_)) e/ A rfr) (274)
V2n

with Equations (267) to (270) the same as above and
P=m—(0-¢) (275)

and

& = 4. (276)

Equation (274) may now be simplified to

. -ii /1 . e .
U'"”' o € (__) e_]k(.lm-{.z)nsmoejkl[n cosf+h Sm”]' (277)
V2nk \€

Thus, the total field from the diffraction occurring from the terms with Dy, for the
backscatter case, (Equations (273)4(277) in the limit as e — 0), valid in the region
defined by Equation (262), is

: o ing X / k
ytotalleft , g=ik(im+2)osing o5 2k [hsin 8 — 2macos ). (278)
g

2.2 D,.---and ---D; Terms

Consider the terms with diffraction from the top right edge (D;) shown in Figure

64. The field from D, --- for a bistatic angle of ¢, where € is a small number, valid
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in the region defined by Equation (263), is given as

UI),-.. ~ —48-2‘kR£Z,:"+1) t (7" + (‘I; — ¢’)) e]-*("."' """'Fi'r), (279)
VvV &r

where m is the number of reflections before reflecting from the base of the parallel

plate cavity and Equations (267) and (268) are the same as before, and
ri=az+hz (280)
is the position vector of the diffraction point (D),
= —(d4m 4+ 3)ai - hz (281)
is the position vector of the diffraction point (D;) imaged through all reflection,
= (6~ €), (282)

and

' =x4+0. (283)

Equation (279) can now be simplified to

e‘j{
V2rk
The field from --- D,, valid in the region defined by Equation (263), is given as

Uy R(zmm (”_iﬁ’;:";')) Ik (285)

UM e (1) g ik(Im42)asind gikel(m+Nncom-hsind]  (9g4)

4\/2 k 4
Using Equations (267), (268), (280), (281),
b=r+(0-¢), (286)
and
& =6 (287)
Equation (285) may be simplified to
_.'%

€
U...[)’ ~ —

Vrk

(_1_) e—jk( fm+2)a .-inﬂe—jk-[nuw(i-h siuﬂ]‘ (288)
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The total field from the diffraction occurring from the terms with D., for the
backscatter case, (Equations (284)+(288) in the limit as ¢ — 0), valid in the re-
gion defined by Equation (263), is

Ulolal right e—jk(lm-}»?)n sinoej% ,g’f [2(m + 1) acosf — hsin 9] . (289)
4

It can easily be shown that when both the diffractions of D, --- and D, - - - are at
the shadow boundaries defined by Equations (262) and (263), the terms D, - -- and
D; - - - are continuous, and Equations (278) and (289) may be further simplified. At
the boundary,

2h
=6 =cot”’ | ————|;m=0,1,--- 290
{ = Co [(2m+1)d]’m vy ’ ( )
the field from D --- R type terms is
U])...+...l)|n=n — —g-G.COS e'ej%e-jkﬂ:lanﬂl xinel. 201
VA
At the shadow boundary,
h
9 = b, = A (S = g
6, = cot [(m n l)d] ;ym=0,1 , (292)
the field from D --- R type terms is
Ut e = 0. (293)

From Equations (264) and (265), as § approaches 90°, more and more terms are
required. However, from Equation (291) it is observed that as 6 increases towards
90° the result approaches zero, so it is no longer necessary to include these higher
order terms. This should be expected physically since less and less of the cavity is

visible and the broadside reflection from the outer cylinder becomes dominant.

2.3 D..-D Terms

Also of importance are the D,.--D, and D,---D, terms. Although, for the

backscatter case, these terms do not contribute to the continuity of the fields, they
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are as important as the D-.- and --. D type terms. 1t is found that the dominant
part of the terms, D, --- D, and D, --- D, associated with both the diffractions be-
ing near the shadow boundaries, cancels. However, a significant part remains from
the non-dominant part of the terms, D, .-- D, and D, --- D, associated with only
one of the diffractions being on the shadow boundary.

Typical results from terms of the type D --- and - - - D (Equations (278) and (289)
valid in the regions given by Equations (262) and (263), respectively) are shown in
Figure 65. At the boundaries, Equations (290) and (292), the D--- and - -- D terms
go through peaks (Equation (291)) and nulls (Equation (293)), respectively. In
general, as shown in Figure 65, the D --. D terms relatively smooth out the peaks

and the nulls of the D -.- and --- D terms.

3 Parallel Plate Cavity Verses Dihedral

From the dihedral study in Section 2, and Figures 15 and 16, it is observed that the
DD across the face of the dihedral balances the slope discontinuity of the DR and
RD terms for the backscatter case. However, as seen in the above section, for the
parallel plate cavity, the D..- D terms relatively smooth out the ripple due to the
D---and -- D terms. Thus, the response of a parallel plate cavity is not as sharp

as compared to that of the dihedral.

4 Results

Figures 66 and 67 compare the results obtained by including terms up to 12 reflec-
tions after diffraction and the Method of Moments at 10 GHz. The dimensions of
the cavity are d=4 in (3.387 A) and h=8 in (6.773 X). As expected, the results

compare well with the method of moments.
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Figure 65: Importance of D--- D terms for a parallel cavity d=4 in and h=8 in
with ¢¢ polarized field.
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Figure 66: Backscatter field for a parallel cavity d=4 in and h=8 in with ¢¢ polarized
field.
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Figure 67: Backscatter field for a parallel cavity d=4 in and h=:8 in with 66 polarized
field.
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5 Circular Cavity

Consider the circular cavity shown in Figure 68. Apart from the terms present in
the parallel plate cavity, terms with single and double diffractions and reflections
are present that are not in the principal plane of the cavity. However, terms with
diffraction points not in the principal plane are not considered in this study. It is
found that for circular cavities, the smaller the height to width ratio, the larger is
the region over which the terms in the non-principal plane are insignificant. The
circular cavity result is obtained by modifying the terms of the parallel plate cavity
by the spread factor and the caustic correction. The caustic corrections are basically

the same as that for the top-hat discussed in detail in Section 5.

6 Spread Factor Modification

In order to account for the concave geometry, the spread factor has to be modified

to take into consideration each bounce on the circular cavity.

6.1 Spread Factor for R--- D,

Referring to Figure 69, the spread factor for R--- D, will be derived. For the
backscatter case, the spread factor for R--- Dy is the same as for D, ---. In general,
for m reflections after reflecting from the base of the cavity, the spread factor may

be represented as

Do forton = [ o1 oy PPy N
apre acfor — ¥ r re Iy
e (7' +3) (P + 8) (p1* + 5) (3" + 5)
~ i
r(2m+1) r(2m+1) 7
Py P2
) r{2m r(2m+1 4 ) (294)
(P‘( +1) +3) (Pz( +1) + 3)
where
r r r(2m+1
p === F'l( = oo, (295)
ri --a
y = —— 206
P2 = 5in6’ (296)
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Figure 68: Circular cavity geometry.
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Figure 69: R .- D, type terms in circular cavity.
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and
2a

sin@’

is the distance between two points of contact on the circular part of the cavity. For

8 =

(297)

the second reflection,
r2 s+ P;'

= _ 298
p2 1_25:!0(.,+'p;|), ( )
; 1
rI = - 299
P2 1__2s:1||0(s+p;|)’ ( )
and for the n th reflection
r(n-1)
rn s+ P2
Py = — s (300)
2 1- Zs:'nﬂ (3 + Pz( '))
1
oy = - —— 301
2 1— 25:,n0 (3+P2( 1))’ ( )
and for the diffraction,
p=p"" 4. (302)

Using Equations (295) to (302) in Equation (294), the spread factor becomes
: L
Pspread factor = [P;'PZZ‘P;‘% N 'P;(Z'"+').] : . (303)
6.2 Spread Factor for R--- D,

Referring to Figure 70, the spread factor for R--- D, will be derived. For the
backscatter case, the spread factor for R--- D, is the same as for D, - --. In general,
for m reflections after reflecting from the base of the cavity, the spread factor may

be represented as

Duprea foctor = oy o5 S -
s ca actor — ¥ r IS r
" (pi' +8) (%' + 8) (72 + 8) (0" + 38)
i
r2m r2m 2
Py P2
. . 304
e+ 0 1)) (304)
where
P =P == p"" = oo, (305)

118




Figure 70: R.-- D, type terms in circular cavity.
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1 —a
L 306
P2 = 9end’ (306)
and
L (307)
sin 8

is the distance between two contact points in the circular part of the cavity. For the

second reflection,
Tl
r2 3+ p;

= ' s 308
() 1_25;n0(8+p;|) ( )
1
T2 — . 309
P2 1_25:;10(3+p)2'1)’ ( )
and for the n th reflection,
r(n—-1)
rn 3 + P2
P2 = 2si r{n— ’ (310)
2 1— zs:‘no (8 + P2( '))
1
= - 311)
2 1-— 25::19 (5 +p;("-|)) ’ (
and for the diffraction,
(p5°™ + 8)
p= r2m sin (312)
(3™ + 8) - _2_.;'__0’
and
3 ! (313)
r = rim sinf °
(Pzz + 3) - ’2—5—0
Using Equations (305) to (313) in Equation (304), the spread factor becomes
[t vze e ame 1}
Papread factor = [P; P; P; : ‘P; ” P ] . (314)
However, if m = 0 (i.e., for the terms D, R, and R, D))
—-a 12
p.cprrm'l factor = [2sin9 (315)

6.3 Spread Factor for D, --.D,

Referring to Figure 71, the spread factor for D, ... D, will be derived. For the

backscatter case, the spread factor for D,--- D, is the same as for Dg <« D). In
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Figure 71: D, -.- D, type terms in circular cavity.

121




where

for the first reflection,

for the second reflection,

factor may be represented as

Pspread factor =

P i o3 pipy N
s(pr +3) (Pt + 8) (5 + 3) (pV2 + 8) (p5% + 3)

r2m r2m

Py P2

N

(p1*™ + 8) (p7™" + 5

and for the n th reflection,

—a
pr= (sin 8 4 sin B)’
5= 2a
~ sing’
p’l-' = 38,
P12 = 23’
™ = 2ms,
pr'l — P + 8
t1- 2808 (py + )’
ris __ 1
TR ()
r2 p;l + 3
Py = 2sinf3 rt ’
1- =25 (ph +s)
r2» __ 1
P2 1— Zs:’nﬂ (p;] + 8),
g = P 4+ s
2 «in r{n- ’
TR ()
prn- — 1
2 1— 252‘3 (p;("_') + a)"
r2m
+ s
p2= P2

- (Hnfmint) (pram 4 )’
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general, for m reflections after reflecting from the base of the cavity, the spread

(316)

(317)

(318)
(319)
(320)

(321)

- (322)

(323)

(324)

(325)

(326)

(327)

(328)




and

1
P; = sin f—sin : (329)
1 - (isl) (pr2m + )

Using Equations (317) to (329) in Equation (316), the spread factor is

1 r2s r3 [ :
p.qprrnd factor = [P|P; P; -P; . 'mp;] . (330)

7 Cake Pan Results

In this section, the results obtained by the UTD method mentioned above are com-
pared with the modal theory. The results for the modal theory are obtained from
[29). Figures 72 and 73 are for backscatter with ¢¢ and 89 polarizations for a cake
pan of both the radius and the height of two wavelengths. Figures 74 and 75 are for
backscatter with ¢¢ and 88 polarizations for a cake pan of radius two wavelengths
and a height of four wavelengths. Figures 76 and 77 are for backscatter with ¢¢
and 66 polarizations for a cake pan of radius two wavelengths and a height of ten
wavelengths. Figures 78 and 79 are for backscatter with ¢¢ and 66 polarizations for
a cake pan of radius five wavelengths and a height of ten wavelengths.

From a simple ray picture it may be shown that the first D --- term which is not

in the principal plane and hence not considered in this solution, appears at

(331)

0 = tan™ [—‘—1—] ;
hv/2
Note that this is a boundary, and the solution may begin to deteriorate even before
it. This corresponds to § ~ 54° for Figures 80 and 81, & ~ 35° for Figures 72 and
73, 6 ~ 19° for Figures 74, 75, 78 and 79, and @ ~ 8° for Figure 76 and 77. Taking

this into consideration, it is observed that the results compare well with the modal

theory.
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Figure 72: Backscatter field for a circular cylinder with radius 2 and height 2 with
¢¢ polarized field (UTD solution valid for 6 < 35°).
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Figure 73: Backscatter field for a circular cylinder with radius 2X and height 2 with

08 polarized field (UTD solution valid for 6 < 35°).
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Figure 74: Backscatter field for a circular cylinder with radius 2 and height 4A with
¢¢ polarized field (UTD solution valid for 6 < 19°).
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Figure 75: Backscatter field for a circular cylinder with radius 2) and height 4X with
66 polarized field (UTD solution valid for 8 < 19°).
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Figure 76: Backscatter field for a circular cylinder with radius 2X and height 10\
with ¢¢ polarized field (UTD solution valid for 6 < 8°)

pv-

506 N %

RCS (08/WL1+2)

o)

-0
-
-

i A i A [ A A
0 -} 10 -] 20 23 30 35 40 45 S0
ANGLE (DEG.)

Figure 77: Backscatter field for a circular cylinder with radius 2\ and height 10A
with 66 polarized field (UTD solution valid for ¢ < 8°).
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Figure 78: Backscatter field for a circular cylinder with radius 5A and height 10A
with ¢¢ polarized field (UTD solution valid for 8 < 19°).
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Figure 79: Backscatter field for a circular cvlinder with radius 5) and height 10\
with #8 polarized field (UTD solution valid for 8 < 19°).
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Figure 80: Backscatter field for a circular cylinder with radius 4 and height 2) with
¢¢ polarized field (UTD solution valid for 6 < 54°).
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Figure 81: Backscatter field for a circular cylinder with radius 4A and height 2X with
00 polarized field (UTD solution valid for 8 < 54°).
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SECTION 8

Donut

1 Introduction

First and second order Geometrical Optics solution and their caustic corrections for
the donut are obtained in this section. This is a special case of scattering from
elliptical cylinders discussed in detail in {30]. This configuration is of interest since
it can represent tires on a vehicle and with Section 7 a wheel hub. It is observed in
[30] that a fourth order equation has to be solved in order to determine the reflection
points from such a geometry. However, working the other way around, with one of
the reflection points assumed known, a simple solvable equation can be obtained to
get the angle of incidence. Interpolation can then be used to determine the reflection
points for a given angle of incidence. In Section 2, for a general bistatic case, the
points of reflections for the double bounce are determined.

The rest of the section deals with backscatter. First, the GO term for the 2-d
cylinder-cylinder doubly reflected term is obtained in Section 3. This is used later
to get GO field for the donut. The first order GO solution for the donut and its
caustic correction are obtained in Sections 4 and 5, respectively. In Section 6, the

second order GO solution for the donut and its caustic correction is discussed.
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2 Cylinder-Cylinder Interaction

Consider the two-dimensional geometry shown in the Figure 82. In order to compute
the spread factors, it is necessary to determine the points of reflection. It was found

in Section 3, that for the double bounce to occur, the angle of the dihedral must

0-=0

5 l Thus, for a given bistatic angle, two dihedral

bea=3+[5 orass-]|
angles are possible which will result in a double bounce. Of the two double bounces,
one is for the case when the first reflection occurs from cylinder of radius a,, R, Ry,
and the other is for the case when the first reflection occurs from cylinder of radius
a2, R2Ry (R, and R, refers to reflections from the cylinders of radius a, and a,,

respectively). However, for the backscatter case, there is only one dihedral angle,

a = %, and the two ray paths, R, R; and R;R,, are the same. We will determine the

1<

Figure 82: Cylinder Cylinder interaction.
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reflection points for one of the rays, R(R, or R;R,, and use that result to determine
the reflection points for the other ray path. First, the ray path that results is the
dihedral angle being greater then 7 will be considered; i.e., a = 7 + l”—";l'| This
choice is necessary in order to avoid the ambiguity in the relationship between sides
and angles, the sine rule. »

From Figure 82, it is observed that if 8 > #', a is greater then  (i.e., a =
S+ 19:591'), we will determine the angle 8 for R,R,. However, if § < ¢, we will
determine the angle 3 for R;R,. From Figure 82, one gets

~,=ﬁ_a+§. (332)

Using the sine rule on the triangle formed by #,, 7, and the y-axis,

dy +d, 3y 82

sin(vr — a) = Sin(-’% _ ‘7) = sinﬁ, (333)

where s, and s; are the length made by sides 7, and n,, respectively. Using Equation
(333) and applying sine rule on the triangle formed by 7, ; and the two points of

reflection,
_(di +dy)cosy —aysina_ sin(§' + )

= = . 3

(di + d»)sin 8 — azsina cos (8 + §) (334)

Rearranging Equation (334) and solving for the incidert angle, 4,

_y Hcos B ~ cos(B — a — )
6 = tan™'
an [n sinf—sin(B—a—6) ]’ (335)
where 8, is the bistatic angle,

6, =6-46. (336)

Equation (335) may be used to obtain the incident angle, 6, if the point of first
reflection, or B, is known. However if 8 is known, which is normally the case, then
B may be found by trial and error. A more reasonable approach may be to find 8’s
for particular values of 3, using Equation (335), and then interpolating to find 3 for
a particular §. Now, 7 may be found from Equation (332).
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00’

> l, referring to the other double

Now, consider the other case, when a = § — I

bounce, it can be shown that

ﬂnlh(" = ﬁ - 'gb‘ (337)

and
-9

2

Thus, one double bounce occurs at reflection points defined by angles 3 and «, and

Yother = ﬂ - (338)

the other double bounce occurs at the reflection points defined by angles 3, , and

Yother -

3 Two-Dimensional Cylinder-Cylinder Doubly
Reflected Term

Referring to the two-dimensional geometry shown in Figure 83. The backscatter

doubly reflected term R, R;, using Equation (1}, is given as

—_—rr _ —y P — — p’l.lp'l.z kA -kr_‘-rl"’ .k'___r .
E _(E(o)-R,)-Rz,Im ™Ik I F kPt (339)

?. and ﬁ; are defined in Equation (1) at the first and second reflection points,
respectively, and p|' and p}’, the caustic distances for the first and the second

reflected rays, are given as
,, asn(8+p
pl' = —_—.(_2_____)’ (340)

and
1 1 2
— = : 341
Py stp) Jrac08(9+*r) (341)
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Figure 83: Two-dimensional Cylinder-Cylinder showing R, R, interaction.
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4 Donut: First Order Solution

Consider modifying the 2-D double cylinder to a donut, shown in Figure 84. For the

backscatter case, the two single reflected fields, from Equation (1), are given as

E" = E(0) - Ry/oipy &0+, (342)

where p} and pj are obtained using Equation (5). The radii of curvatures are R, =
:FET?F& +a and R; = a. Also, using ' =0, 6, = 5 and 6, = 3 in Equation (5), the
caustic distances become

a
LA 4
pl 2’ (3 3)

d
Pr=Fra—ot+5- (344)

In Equation (342), 7. = 7., for the reflection from the donut on the — y-axis, and
for the reflection from the donut on the + y-axis 7. = ,,. In Equation (344) and in
the radius of curvature, Ry, — and + signs refer to reflection from the donut on the
— and + y-axis, respectively. Note that a first order caustic occurs when § — 0 and
py — oo. This caustic correction may be done much the same way as the first order

diffracted caustic is corrected, which is discussed in detail in Section 4.

5 Caustic Correction to the First Order Solution

The concept of using equivalent currents for caustic correction discussed here have
also been used in References (31, 32]. The equivalent line currents for a cylinder
are obtained by setting the infinite cylinder’s GO reflected field equal to the field
radiated by the infinite line currents. The equivalent line currents for a cylinder are

I'=4-(E(0)-R) @ et Jeret e, (345)

7

and

I" = -4 (H(0)-F) ﬁve"%\/ﬁe’“‘"’, (346)
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Figure 84: Geometry used to get first order caustic corrected fields.

135




where
a i; M ﬁr
Pr=3 sin?f’

(347)

a is the radius, and 7, is the normal to the 2-D cylinder as shown in Figure 84. First,

the caustic correction from half of the donut on the + y-axis will be considered. The

tesult from this caustic correction will be used to get the result from the whole

donut. Referring to Figure 84,
- d X N d . . . .
r. = 2 +asinf ) cos¢p £ + 3 +asin8)sing §+acosh z,
i, = cosf z +sinf g,

B =singz— cos¢§,

7 =sinf y+cosf z,

and
# =sind §+ cosb 3.
Let
E' = E,i
and E, = 1. The far-zone ﬁelds, due to the equivalent line currents, are

e—-]kr

E = BjnksinB
4nr

[ (8)et*rag,

and
e-jkr

Ep = (B x 7) jksin 8 /o " I™ (4) & dg,

Equations (354) and (355) may be simplified to

4xr

—Jkr
ek 2 [@ sonceete [T . . OV ain B
el __ejk2a(.ns 0/ sm2 ¢eﬂr(d+20smﬂ)smﬂsméd¢,
r 2« 2 0

. =

and
- e—-)kr k
T s ox
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ejf E ejk20 cos28 [T c052 ¢ejk(d+2a sin 0) sin 8 sin ¢d¢
2 0

(348)

(349)
(350)

(351)

(352)

(353)

(354)

(355)

(356)

(357)




Combining Equations (356) and (357) and after some manipulation, it may be shown

that the first order reflected field with the caustic correction, is given as

E" = E'(0) R/ophe™ T, (U), (358)
where
1 - L3
T.(U) = -;;fu\/%e’(”‘f’, (359)
fo =7 [Jo(U) + §Ho (V)] (360)
and
U= k(gﬂ:asinO) A, (F + 7). (361)

In Equation (360), J, and H, refer io the Bessel and Hankel functions, respectively,
and in Equation (361), the + and the — signs refer to the reflection from donut of
the + and — sides of the y-axis, respectively. The normal at the point of reflection
as defined in Equation (349), is #,. The transition function is T, (U). The following
are the small and large argument forms which are obtained using the series and the
asymptotic forms, respectively, of the Bessel and Hankel functions, so that for

Ul << 1,
. " 2 4 2
T,(U)z\/%e"<"”7){l—y—-+tj—+_jg—q 1—% } (362)

and for (U] >> 1,

+ - Y s 1- 1.

©8U T 128U2 102407 2 (363)

6 Second Order Solution and its Caustic Correc-
tion

The second order solution to the donut (Figure 85) obtained by modification to the
double bounce on the two-dimensional cylinder-cylinder, discussed in Section 3, is

given as

-

B - (E“(o)-ﬁ".)-ﬁ\J T LRGN C' D)

(P +3) (7 +3)
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Figure 85: Geometry showing the term R, R, from a donut.
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where R, and R; are as defined in Equation (1) at the first and second reflection

points, p}' and p{? are as defined in Equations (340) and (341), and

(acosﬂ - 12!)
o= 6
Pz 2sin (6 + B) cos B’ (365)
and
1oL Zeos(61f)einf (366)
[2) s+ p; (asmﬂ— 5)

are obtained using Equation (2).

It is observed that as § — 0, p)? — oo, Equation (364) appears to become
infinite. This is expected since we are at a double reflection caustic. However a
careful evaluation of Equation (364) at the caustic shows that the double reflected
field vanishes at the caustic. One simple way to see this is to look at two double
reflected terms that are ¢ = 90° apart on the donut. It is observed that along the
z-axis, these {two terms cancel each other. Thus, the total resultant field from the
double reflected caustic, along the z-axis, vanishes. However, near the caustic, § = 0,
it is necessary to set up equivalent currents on half rims that are associated with
the two reflection points and integrating the equivalent currents along half-circles,
the radius of which are determined by the two reflection points (GO), in order to
obtain the doubly reflected field. This interaction could not be written in closed
form because of the complexity of the distance parameter, s, the distance between
the two reflection points. (See Figure 85.) Performing this integration numerically,
it was found that the doubly reflected term hardly made any contribution to the
total result, at least for the dimensions of the donut considered. (See Figures 86 and

87.)

7 Results

Figures 86 and 87 compare the soft and the hard backscatter at 10 GHz from a donut
of solid radius, a = ;= in (0.943 ) and the ring radius, § = 52" in (2.7 A). Since

2sin 1n°
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the result for the soft palarization, Figure R6, is hetter than for the hard polarization,
Figure 87, it is expected that the creeping waves, which have not been considered in
this solution, are important for this dimension of the donut. Since the result worsen

as 0 increases, it may be expected that double bounce mechanisms that are not in

the principal plane become more important.
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Figure 86: Backscatter from Donut with ¢¢ polarized field.
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Figure 87: Backscatter from Denut with 68 polarized field.

141

;—



SECTION 9

UTD Scattering from
Multi-Joined Cylinders

1 Introduction

The multi-joined cylinder model for the scattering of the electromagnetic fields is
developed for the purpose of studying radar remote sensing of forested areas. The
top-hat, discussed in Section 5, can be used to study the tree trunk and ground
interaction. In this section, the multi-joined cylinders model, see Figure 88, is used
to investigate the scattering from tree trunks and branches. Concentric dielectric
layers are used to represent the material characteristic of the trunks and branches,
and their shape is represented by using more than one cylinder to create bends.
Uniform Theory of Diffraction (UTD) is employed to obtain the scattered fields.
The dihedral study done in Reference {13] and outlined in Section 3 is used as the
building block for modeling the cylinder-cylinder interactions. The main differences
being that the reflection coefficients are modified to take into account the dielec-
tric layers, see Appendix B or Reference [33], and the standard .wo dimensional
UTD diffraction coefficients are modified to take into account the spread factors and
caustic corrections. The caustic corrections are basically the same as discussed in

References (21, 22| and summarized in Section 4. Also, junction characteristics, not
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Figure 88: Multi-joined cylinder model.
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discussed in the literature, snch as radins of curvature and edge normal, are required

to obtain the diffracted field from a junction.

2 Theoretical Background
2.1 Modified Diffraction Coefficient

In order to find the scattered fields from dielectric surfaces, the edge diffraction
coefficient for the perfectly-conducting case (Equation (25)) discussed in Section 3,
has to be modified to take into account a junction of two dielectric plates. It is shown
in References [34, 35) that the modified diffraction coefficient for an electrically thin

dielectric is

b, o = (1 T3 cot (f:ﬂ’:_‘l’ﬁ) +(1- T2 cot (1r +(®— <I>’))

= 2027k 2n 2n
oh n— (Q + (P’) s.h -+ (Q + QI)
+R"cot | ——————= ) + R*" cot | ———————
? 2n n 2n ?

(367)

where R>" and R" are the reflection coefficient for the vertical and horizontal
polarization for the ‘o’ and the ‘n’ faces, respectively, and T™" and T are the
transmission coefficient for the vertical and horizontal polarization for the ‘o’ and
the ‘n’ faces, respectively. Details of the reflection and transmission coefficient are
presented in Appendix B or Reference [33]. To generalize the edge diffraction coef-
ficient to include diffraction due to dielectric plates, the following assumptions are
made (34]

() n~ 1,0orn = 2 and

(b) the width of the dielectric plates is a small fraction of a wavelength.

Note that this is not the case for the multi-cylinder model. However, if the
cylinders are assumed to be lossy, the transmission coefficients, T,’,': , are negligible.
In general, for the backscatter case, the incident boundary cotangent terms have a

much smaller contribution as compared to the reflection boundary cotangent terms.
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Hence, for the backscatter case the transmissinn coeflicient may be assumed zero.
Therefore, under the assumption of backscatter and lossy cylinders, Equation (367)

can be simplified to

_ o35 _ & &
Du,d = e’V cot (l_iul) + cot (LHL_Q)
2nk

2n 2n 2n
-~ / '
+R>" cot (I——%‘f{’—g—)-) + R2" cot (f—t(—;}tt{l-)-)] . (368)

2.2 The Junction Edge Normal Vector and Curvature

In order to find the diffracted caustic distance, p4, in Equation (22), from a typical
cylinder-cylinder junction, it is necessary to determine the edge normal vector, #.,
and the radius of curvature, a.. Here, the right hand x-y-z coordinate system is
defined so that the x-axis is along the normal to the end cap of the main cylinder
(trunk) and the y-axis is in the plane formed by the end cap normals (also the
pattern plane) in the direction of the junction of interest, Figure 89. It is shown in
Appendix C that for a cylinder-cylinder junction angle a (the dihedral angle) and

equal radii of cylinders, a, the junction edge normal is
e = COS (%) ¥ + sin (%) z, (369)
and the radius of curvature is

a. = acos (g) . | (370)

3 Modification to the Two-Dimensional Dihe-
dral

The only canstic that needs to be considered is that of single diffractions from the
end caps. Thus, its correction is the same as that of the cylindrical part of the top-
hat, which has been discussed in Section 3.1. Note that even if the junction angle,
a, is 90° the diffracted-reflected and the diffracted-reflected-diffracted terms do not

exhibit caustics at broadside.
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Figure 89: Cylinder-cylinder diffracted-reflected terms.

3.1 Spread Factor and Caustic Correction for Diffracted
Terms |

Equation (22) is used to get the spread factor for single diffractions. However, if the
single diffraction is from a junction, 7, and a. used in Equation (22) are defined by

Equations (369) and (370), respectively.

3.2 Spread Factor for Diffracted-Reflected Type Terms

For the backscatter case, the spread factor due to the diffracted-reflected (DR) and
reflected-diffracted (RD) terms are the same since the two ray paths are the same.

For details, see Section 2.
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The spread factor for the Ny R. term (or R, D)), see Figure 89, may he represented

as ]
pl)l Ry ____p__prpr : (371)
spread factor = 3(pd + 3) 1F2 ’
where p”, using Equation (22), is
d a
_ 372
P = sin6+sin(2a - 0)’ (372)
and the principal radii of curvature of the reflected wavefront are
P =3, (373)
and
i -6
_1: __1 - 2sin (a — 6) (374)
ps s+p a
or
. a (s + p") (375
p2_a+(s+pd)2sin(a——0)' )
Using Equations (372) to (375) in (371),
D ¢y = 376
pwprrml Jactor [a + (8 + p,{) 25"1 (C! _ 9)] ( )

The spread factor for the D, R, term (or R, D,), see Figure 89, may be represented

as .
R, P r r ! 377
Papread factor = :(_mplp'z ’ ( )
where p7, using Equation (22), is
d a
- , 378
P sin (a + 8) + sin (a — 8) (378)
and the principal radii of curvature of the reflected wavefront are
Py = s, (379)
and ( d)
als+p
= . 38
& a+(s+p7)2sin (380)
Using Equations (378) to (380) in (377)
d 3
D21y _ pa 3
pnprrml factor [(1 + (8 + p")2sin 0] . ( 81)
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3.3 Spread Factor for Diffracted-Reflected-Diffracted Terms

The spread factor for the D, R, D, term, see Figure 90, may be represented as

D2, D [ PPy d
Papread factor = - 02| 382
pread fact .\J(p’,’—lhs)(of’l'F"’)(Pz"“’)2 (382)
where p7, using Equation (22), is
d a
= 383
P cos a + [sin (a — §)|’ (383)
and the principal radii of curvature of the reflected wavefront are
o = s, (384)
and
1 1 2
- = + = 385
Py s+pi (385)
and for the second diffraction, p¢, using Equation (22), is
1 cosa + |sin{a— 8
o= — fin (o = )l (386)
(p3 + 8) a

The spread factor for the D, R, D, term, see Figure 90, may be represented as

DRy D Py PrP> d
pa )lrwfc |m~ or = r r p (387
premd foct s(pl+3) (ol +8)(pr+9)7) )
where p?, using Equation (22), is
4 a
PI= cosa+smd’ (388)
and the principal radii of curvature of the reflected wavefront are
P =8, (389)
and
1 1 2
L= = - 390
Gostel (3%0)
and for the second diffraction, p?, using Equation (22), is
1 cosa + siné
d
= 391
Pt a (391)
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K

Figure 90: Cylinder-cylinder DRD terms.
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4 Model Types and Results

Two types of models are considered, as shown in Figures 91 and 92. The models
are made of PVC pipes with absorber placed inside because it is inexpensive and
easy to piece together into various configurations. They are chosen to validate the
dielectric aspects of the code. The dielectric properties of the PVC and the absorber
are well known. The configurations are chosen to resemble the crooks of trees. It is
not suggested that the results from these models are directly comparable to those
from trees.

To determine the effects of terminations while comparing the Uniform Theory of
Diffraction and the measurement results, the following order of analysis is carried
out. All the results are for the backscatter case. First, the plastic cylinders and the
end caps are covered with aluminum foil: Figures 93 and 94 show the vertically and
horizontally polarized fields for the T-junction at 2 GHz, and Figure.s 95 and 96 show
the vertically and horizontally polarized fields for the Y-junction at 2 GHz. Second,
the plastic cylinders are covered in aluminum foil, but flat absorbers are inserted
in the end caps: Figures 97 and 98 show the vertically and horizontally polarized
fields for the T-junction at 2 GHz, and Figures 99 and 100 show the vertically and
horizontally polarized fields for the Y-junction at 2GHz. Next, the cylinders are the
same as above, but cone pyramid absorbers are inserted in the end caps: Figures 101
and 102 show the vertically and horizontally polarized fields for the T-junction at
2 GHz, and Figures 103 and 104 show the vertically and horizontally polarized fields
for the Y-junction at 2 GHz.

4.1 Specular from PVC Cylinder with Absorber

Figure 105 shows the real and the imaginary parts of the dielectric constants for the
absorber used to fill the PVC pipe. The dielectric constant of the PVC pipe is taken
to be that of Polystyrene given as € = 2.55 — j8.5E — 04 (36] and is assumed fixed
over 2-18 GHz.
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Figure 93: Backscatter from T-junction covered in aluminum foil at 2 GHZ for
vertically polarized field.
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Figure 94: Backscatter from T-junction covered in aluminum foil at 2 GHZ for
horizontally polarized field.
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Figure 95: Backscatter from Y-junction covered in aluminum foil at 2 GHZ for
vertically polarized field.
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Figure 96: Backscatter from Y-junction covered in aluminum foil at 2 GHZ for
horizontally polarized field.
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Figure 97: Backscatter from T-junction covered in aluminum foil, but flat absorbers
inserted in end caps, at 2 GHZ for vertically polarized field.
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Figure 98: Backscatter from T-junction covered in aluminum foil, but flat absorbers
inserted in end caps, at 2 GHZ for horizontally polarized field.
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Figure 99: Backscatter from Y-junction covered in aluminum foil, but flat absorbers
inserted in end caps, at 2 GHZ for vertically polarized field.
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Figure 100: Backscatter from Y-junction covered in aluminum foil, but flat absorbers
inserted in end caps, at 2 GHZ for horizontally polarized field.
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Figure 101: Backscatter from T-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 GHZ for vertically polarized field.
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Figure 102: Backscatter from T-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 GHZ for horizontally polarized field.
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Figure 103: Backscatter from Y-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 GHZ for vertically polarized field.
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Figure 104: Backscatter from Y-junction covered in aluminum foil, but cone pyramid
absorbers inserted in end caps, at 2 GHZ for horizontally polarized field.
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In order to match the theory with the measurements in the specular region broad-
side to the PVC bipe with absorber flat at the end caps it is necessary to set an air
gap between the PVC and absorber in both the UTD and the eigenfunction solution.
This may be explained by the fact that the absorber is not tightly fitted into the
PVC pipe. Figures 106 and 107 show the horizontal and the vertical polarizations
from a 24 in long cylindrical pipe of radius 1.5 in. An air gap of 0.18 in is chosen
for the theory to match the measured results. It is observed that the PVC pipe
was slightly elliptical which can explain why the ripple in the eigenfunction solu-
tion due to the creeping wave does not match with the creeping wave ripple in the

measurement.

4.2 Results of PVC pipe with absorber

In the modified diffraction coefficient, Equation (368), one face of the wedge is
unaware of the characteristics of the other face. This suggests that simplifying
Equation (368) to retain information of only one face at a particular direction should
provide even better results. The diffraction coefficient is simplified as

if IR;',"' cot (’_':_(g’:_"_'l)l > |R2# cot (n+g¢+¢'2)|,

2n

—eTii T —(®+ @)
D, RPcot | ———1);
= Iny/2rk © ( 2n )

if cot (__L_“:o’ )' < |R%* cot (_L___M .;:y )',
—e” oh T+ (P + @)
2m/§1_r_R 4 (__27:——) : (392)

It is found that patterns and signatures of cylinders, T and Y junctions, ob-
tained by using the simplified diffraction coefficient, Equation (392), compare better
with measurements than those obtained by using the modified diffraction coefficient,
.Equation (368). For all the results shown in this subsection, the simplified diffraction
coefficient of Equation (392) is used and an air gap of 0.18 in is assumed between

the PVC pipe and the absorber. Also, all the results are for the backscatter case at
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Figure 106: Specular from 24 in long cylinder of radius 1.5 in for horizontally
polarized field.
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Figure 107: Specular from 24 in long cylinder of radius 1.5 in for vertically polarized
field.
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2 GTz. For a 21 in long cylindrical pipe of radius 1.5 in, Fignres 108 and 109 show
the vertical and the horizontal polarizations, respectively. Figures 110 and 111 show
the vertical and the horizontal polarizations, respectively, for a cylindrical pipe of
the same length but of radius 2 in. For the T-junction model, shown in Figure 91,
Figures 112 and 113 show the vertical and the horizontal polarizations, respectively.
Figures 114 and 115 show the vertical and the horizontal polarizations, respectively,

for the Y-junction model, shown in Figure 92.

5 More Realistic Modeling

The PVC models studied above have been chosen simply to validate the theory and
the computer code. More work needs to be done to come up with a reasonable model
for a tree. Certain conclusions from this study, however, may be pointed out. Since
the PVC pipe is not lossy, it is expected that better results can be obtained for
actual trunks and branches. This is because the surface waves will dampen out due
the wood being lossy. Also, in general, it is expected, that the truncations of the
cylinders which are considered in this study only approximately model the actual
shapes of the trunks and branches. One needs to come up with an equivalent length

in order to model a trunk or a branch.
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Figure 108: Backscatter from 24 in cylinder of radius 1.5 in at 2 GHZ for vertically
polarized field.
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Figure 109: Backscatter from 24 in cylinder of radius 1.5 in at 2 GHZ for horizontally
polarized field.
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Figure 110: Backscatter from 24 in cylinder of radius 2.0 in at 2 GHZ for vertically
polarized field.
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Figure 111: Backscatter from 24 in cylinder of radius 2.0 in at 2 GHZ for horizontally
polarized field.
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Figure 112: Backscatter from T-junction at 2 GHZ for vertically polarized field.
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Figure 113: Backscatter from T-junction at 2 GHZ for horizontally polarized field.
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Figure 114: Backscatter from Y-junction at 2 GHZ for vertically polarized field.

MAG. IN DBSM
40 -3 -20 -¥

-50

-60

Figure 115: Backscatter from Y-junction at 2 GHZ for horizontally polarized field.
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SECTION 10

Conclusion

In general, the high frequency EM scattering from complicated physical structures
such as aircraft, tanks, trucks etc. can be analyzed using ray techniques by building
up such complex structures from simpler shapes such as cylinders, cones, dihedrals
etc.. Therefore a complex problem may be analysed piece by piece and then applying
superposition. In this work, classical Uniform Theory of Diffraction (UTD) with
modifications for the caustics and curvalures is used to gei the scattered fields.
Shapes where the second and higher order interactions are important over a wide
range of angle are considered.

It is shown that for the rectangular dihedral in the principal plane, the order of
interactions required to get the pattern in the dihedral region, for a dihedral of angle
a, is found to be the integral value of ('—f:—'o), for the backscatter case. Since the
computer code developed for this analysis contains all interactions up to third order
except the triple diffractions, the solution discussed here is valid for backscatter for
dihedrals of a = 60° or greater. This solution is expected to degrade gracefully
in the dihedral region for a less than 60°. In general, as the angle of the dihedral
diverts from a which makes ('—’:ﬁ) an integer, the main beam amplitude falls fairly
rapidly. The UTD formulation provides excellent results compared with the method
of moments. For the case of maximum scattering, from a GO point of view, and

for a general angled dihedral and bistatic angle, the dominant UTD terms in the
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dihedral region are reduced to simple forms. Comparisons of these dominant UTD
results with the total UTD solutions show good agreement.

The two-dimensional result of the rectangular dihedral is modified by caustic
corrections and spread factors, to get three-dimensional results for the top-hat, bi-
cone, and parallel plate and circular cavities. It is found that the response of cavities
is not as sharp as compared to that of the 90° dihedral. The results compare well
with the those obtained from body of revolution moment method solution.

Scattering from the donut is considered in Section 8. The first and second order
GO field caustics are corrected by using equivalent currents. Again, the results
compare well with the body of revolution moment method solution.

Scattering from cylindrical pipes that form a T and Y-junctions of perfect electric
conductor and dielectric materials are considered. It is shown that by using the
modified diffraction coefficients, the UTD results compare well with measurements
and an eigenfunciion solution. Some more work is required to extend these results
for scattering from tree trunks and branches.

It is observed that a few underlying principles are all that is required to get
scattered fields from many different shapes. It is expected that even better agree-
ment and/or results for small-sized models could be achieved by including more

interactions.
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Appendix A

Balancing of Fields for Joined
Wedges

In this appendix, a detailed mathematical analysis is carried out in order to obtain
various diffracted terms which are then used in Section 4 to show continuity of the

fields. Reference is made to Figure 27. For diffraction from @, the angles are
& =n+e and ¢ =e,. (393)

Thus diffraction from @, is given as

—e N 1 2n 2T+ € — €
D!, = P.o(Q) = — +oot (T2
~h (@) 2n 27k Lea — € «© 2n
2 2 )
F {cot ( mrat 62) + i }] e I, (394)
2n —€; — €

Since the diffracted field is taken close to the incident shadow boundary, P.,.(Q))
may be split into a term, Pé‘m(Q,), which is singular at the shadow boundary, and

non - singular term that is denoted by P.,.(Q).

P, (Q ) _ -‘e".l"l’/‘ 1 + 1 ] - jhed (395)
et T omk le -6 et+e ¢
Noting that P, ,,(Q.) is present only whene; > 0
/ e—j"/' ©7 yko
P .(@)= Tork Lz - 3] e [1 4 sgn(e,)] (396)
1T 2
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and

" eI/ 2 -
P,-'",(Ql) = ¢ [cot (_W:‘___EL___E_Z)

2nV2nk 2n
2 ; aal
F cot (—TL%E'—j——G—fN e”""i {1+ sgn(ez)]. (397)
n

The angle parameters for @), are
¢ =—¢ and =7 —¢€ (398)

and the diffraction from @, is

e Ix/ 2r — € + € 2n
Dz = R m = ¢ [ t ( 2 l) +
= Pn(@) = T N\ T ) Y v

¥ {cot (2" I “) P }} e Ik (399)

2n € + €

Again separating P.,,(Q;) in to singular and the non-singular parts and noting that

P. .n(Q2) is only present when ¢, < 0.

—e In/1 [ 1 1

Pla(@) =~ [ - sgn(e)  (400)

:F
€2—€ € +e€

_ e In/1 E; i
- m [62 62] [l gn(e,)] (401)

| I 4

, —eminl _
Pr,n.(Q2) _ e {cot (21r €2 + El)

2nv/2rk 2n
F cot (?-L—:i%lﬁ)] e [%] (1 - sgn(er)] (402)

The angle parameter for 5 are
¢ =7/2+¢ and ¢=3r/2 + e (403)

For the single diffracted field from Q3. Note ONLY the term that is singular for

diffraction form @ is shown below. This term is associated with = — (¢ — ¢').

P LA 1
P (0)= S - [_“} hbe, = 7)< skd 104
(@) ok le —el© € (404)
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From Figure 27 and Equation (391), we note that for the diffraction from edge Q,,
the term associated with v — (¢ — ¢') blows up. From double diffraction formulation,
n —(¢— ¢') is obtained by setting p = 1in Equation (42). Again from Figure 27 and
Equation (399), it is noted that for diffraction from edge @, the term associated with
7 + (¢ — ¢') blows up. Note that in the double diffraction formulation, the angles
¢ and ¢’ on the second edge (Q,) are defined in the reverse to those defined for
single diffraction. With this in mind, for double diffraction, * — (¢ — ¢') is obtained
by setting ¢ = 1 in Equation (43). Thus, we expect the double diffraction term
obtained by setting p = 1 and ¢ = 1 in Equation (44} to compensate for the
discontinuity and singularities of the single diffracted fields.

For the double diffraction formulation

¢, =(n - r—¢ (405)
and

¢, = (n2 — )7 + &. (406)

Thus
oy =w—[mr—(ny - Dr+e]= —¢ (407)
oy =7 — [y — (1 — 1)1 — &) = € (408)
@yey = 2c08°[—€1/2 — 7 /2] = 2sin’(e, /2) (409)
@y = 2c05%[€2/2 — % /2] = 2sin’(e,/2) (410)

Using the above equations in Equation (46)

PG o) =~z (T2 (%2)

47rjn,n2 € €9

2sin*(e;/2) F|kd2sin’(¢,/2)] — 2sin?(€,/2) F[kd2sin?(e,/2)]

25in%(e;/2) — 2sin?(e2/2)
e—Jkd
( w7 ) . (411)

Flz] ~ (\/wr - 2a-e’"/') et/ 147) (412)

For small x
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“—___

F|2kdsin’(e,/2)] = [,/mrkd(e. [2)? — 4kd(e, /2)%}'”"] eI(x/ 142k /1) (113)
= [,/wkd/z | ey | ~kdeje’™ '] eIm/ 132k} /1) (414)

1| &/4|/rkd/2lei] - kdeler™/1| ei(x/ t+2kdT/1)
Ph(Qy’:l,@q:i): { : [ : ]

e € e2/4 — €3/4

_e?/‘l [\/wkd/2|52| -~ kde%ef*/"] ej(w/4+2kdc§/4)}

€24~ e2/4

() @

neglecting terms of order ¢, and e,

—gw/d .2 2 .
P, 84m1) = —m €1 casgn(c2) 626"5'"(6’)](”“’ (416)

7 2
V2nke e, € — €

_ —e—im/4 c,sgn(Q) — QSgn(él) —jkd
= Vo d-q T o
From Equation (45) '
1 €l/2 €3/2
Ps(¢v=la¢q=') - Swjn'fn% (6%/4"’%) (fé/‘ln%
Flkde?/2) — Flkde}/2) (e=i* (418)
€2/2 — €2/2 kvd
Using Equation (414)
o oy L | (JrRd/2len - kdcterr/") eite/ssssirn
.q( p=1l9 qzl)"‘ 5;.3 Ef/2—€j/2
) ( (—_wkd/2|€2| _ kde%e”"‘) (/4 +kdZ [2) e~ ikd 19
- /2 — €2/2 (k\/a) )
neglecting terms of order ¢, and ¢,
. _e"j’r/“ €2sgn(€2) - f]sgn(fl) —3kd
Pg(¢p:‘l’¢q=’) - m { ('f - E% ¢
_ ﬁe-ﬂ"" (420)
n
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Appendix B

Reflection and Transmission of
Plane Waves in Planar, Stratified

(Multi-Layered) Medium

Details of reflection and transmission of the plane wave in multi-layered medium are
presented in [33]. Here a summary of [33] is presented. Suppose a plane wave in
free space has oblique incidence on a plane multilayer consisting of N homogeneous
isotropic slabs as shown in Figure 116. Let d,, p,,, and € represent the thickness,
permeability, and permittivity of slab n. The slabs are considered to have infinite
width and hight and parallel surfaces, with unbounded free space on both sides of
the multilayer. The incident plane wave impinging on the left-hand surface of the

multilayer is given, in the TE case (i.e. perpendicular polarization) by
E_; - E”ejknusinoejko:mso’ (421)

where § is the angle of incidence, k, = 27/, and ) is the free space wavelength.

The reflected wave is given by
E'r — RE“ejkuysinoe—jkn: u-sﬂ, (422)

where R is the reflection coefficient of the multilayer. The transmitted plane wave

on the right-hand side of the multilayer is represented by
E, — Enejkuysi')ﬂeﬂmzn-nﬂ’ (423)
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Figure 116: A plane multilayer, illustrating the outgoing and the reflected waves in
each layer.

where T is the transmission coefficient of the multilayer. The field in each layer can
be regarded as an infinite series of the plane waves bouncing back and forth, but it
is more convenient (and equally valid) to consider it to be the sum of only two plane
waves, one travelling outward and one reflected. In layer n, for example, the field is

represented by

Ey = (Ane™* 4 Bye ) v, (424)
Similarly, in layer n+1 the electric field intensity is given by
E,. = (A,,He’"*': + B,.+,e""‘+'z) gthovsind, (425)
The boundary between layers n and n + 1 is located at
zo=di+dy+di+++4d,. (426)

By enforcing the boundary conditions on E; and H, at z = 2,, it can show that

An I)ll n A"
vl Q | a2
Bn+i Rn Sn

B"
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“where
e
1 nt1 T} -
5 (1 ﬁ ;)Z,) e (‘)n+‘7n+l)z"’ (429)
l 1— HEnt1n el ¥Inti)an (430)
2 EnTntt ’

and
1 n+1Yn -

S o L “

The propagation constant «, for layer n will be complex if the medium is dissi-
pative. Both the real and the imaginary parts of 4,, will be positive. If layer n is
a lossless medium, 7, will be purely imaginary. The wave equation is employed to

obtain

T = jwip, €, — k2 sin? 6. (432)

The reflection and transmission coefficient of the multilayer can be calculated in

a systematic manner by setting

An - 1 (433)

and

BU = 0 (434)

and then by using the recursion equations Equation (427) to calculate A,, B, A,,
B,, ... An,y, and By, in that order.
From Eqs. (421) through (424),

E() = A/\'+|, (435)
By 4
R= . 436
Ane (436)
and

1
R= . 437
Anyy (437)
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In the TE case the constants 4,, and B, represent the electric field intensities of the
outgoing and reflected wave in each layer. In the TM case (parallel polarization)
the solution proceeds in the same manner. The equations given above apply in hoth
cases but the A, and B, represent the magnetic field intensities in the TM case and
Mui1 and g, must be replaced with €,,, and ¢, in Eqs. (428) through (431).

If a perfectly conducting sheet is placed on the right-hand surface of the multi-
layer (i.e., on the x-y plane), the solution is again given by the equations above with
the exception that the transmission coefficient T is not calculated in this case, and

Eqgs. (433) and (434) are replaced with
Ay =1and B, = —1in the TE case (438)

and

Ay =1 and B, =1 in the TM case. (439)

Equations (438) and (439) are obtained by forcing the tangential electric field inten-
sity to vanish at the perfectly conducting plane.
In the above equations, the reflection coefficient R is defined as the ratio of the

reflected wave amplitude to the incident wave amplitude at the coordinate origin;

that is,
E7(0,0,0)
PO A N the TE s 440
E;(Q,0,0)’ for e case ( )
and
r 0,
R= —II_E—E%O—,%%; for the TM case. (441)
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Appendix C

Cylinder-Cylinder Junction Edge
Normal and Curvature

Consider a “natural” cylinder-cylinder junction shown in Figure 117. The cylinders
have radii ba, and a; and make an angle a at the junction of interest. The position

vector of cylinder 1 in cylindrical coordinates is

1 = a, (COS &z, + sin ¢1§1) + z124 (442)
and of cylinder 2

T2 = ay (COS ¢2532 + sin ¢2g2) + 292,, (443)

where ¢, is measured from z,-axis and ¢, is measured from the z,-axis in the z, — y,
and z, — y; planes, respectively. The two right handed coordinate systems (z,,y:, 2

and z,,¥,, z;) are related so that

Ty = — cos oy — sin azy, (444)
2, = sin a®; — cos az, (445)

and
Y2 = ¥ (446)

Using Equations (444)-(446) in Equation (443)
72 = (2, 8in @ — a, cos @, cos a) &y + a; sin ¢,§, — (a; cos P, sin x + 2z, cos a) 2, (447)
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Figure 117: Cylinder-cylinder junction.

and at the junction

—

F] = Ty.

Now, the junction may be defined by:
ay cos ¢, = zysin a — a;, cos ¢, cos a,

a;sin ¢, = a,sin ¢,

and‘

2y = —(azcos ¢y sina + z; cos a).

From Equations (449) and (450) one gets

2 2 ‘ 2 2 2 s 2 2
0 = z; sin’ @ — z;a, cos ¢, sin (2a) + a; (cos ¢, cos” a + sin ¢>2) - aj.

Solving the above Equation for z,,

1 ; T
z) = aycos gy cot a — ——/a? - aisin? ¢,.
sira
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If the radii of the cylinders are the same, a; = a; = a, then Eqnation (453) may be

simplified to

acos @,
2y = —; [cosa — 1]
sin a
and
- . . . a cos .
72 = a(cos @2 + sin ¢, P;) + — i [cosa — 1] z,.
sin &
The first and the second derivatives,
- dr. ) . . asin .
Ty = -2 _ a(— sin ¢,z + cos dr3,) — s.x ¢2 (cosa — 1) 2,
dé, sin o
and
d*7, a cos ¢.
— 1 2 - . - 2 -
r) = = —a(cos P, + sin ¢, - — cosa — 1)z
2 dd, ( 212 #292) Sin o ( ) 22,

are needed in order to determine the curvature and the edge normal vector.

At the point of diffraction, the junction radius of curvature is

i

a
plp,=0 = m = acos (‘2’) '

and the edge normal vector, n,, is

or
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